The papers are organized according to our survey:
<p align="center"><strong>Evaluating Large Language Models: A Comprehensive Survey</strong></p> <p align="center">Zishan Guo*, Renren Jin*, Chuang Liu*, Yufei Huang, Dan Shi, Supryadi, </p> <p align="center">Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong†</p> <p align="center">Tianjin University</p> <p align="center">(*: Co-first authors, †: Corresponding author)</p> <div align=center> <img src="./imgs/Figure_1.png" style="zoom:30%"/> </div>If you find our survey useful, please kindly cite our paper:
@article{guo2023evaluating, title={Evaluating Large Language Models: A Comprehensive Survey}, author={Guo, Zishan and Jin, Renren and Liu, Chuang and Huang, Yufei and Shi, Dan and Yu, Linhao and Liu, Yan and Li, Jiaxuan and Xiong, Bojian and Xiong, Deyi and others}, journal={arXiv preprint arXiv:2310.19736}, year={2023} }
Feel free to open an issue/PR or e-mail guozishan@tju.edu.cn, rrjin@tju.edu.cn, liuc_09@tju.edu.cn and dyxiong@tju.edu.cn if you find any missing areas, papers, or datasets. We will keep updating this list and survey.
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs.
This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that covers LLM evaluations on capabilities, alignment, safety, sand applicability.
We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks.
The paper proposes a dataset that can be used for LLMs evaluation.
The paper proposes an evaluation method that can be used for LLMs.
The paper proposes a platform for LLMs evaluation.
The paper examines the performance of LLMs in a particular domain.
"Through the Lens of Core Competency: Survey on Evaluation of Large Language Models".
"A Survey on Evaluation of Large Language Models".
Yupeng Chang and Xu Wang et al. arXiv 2023. [Paper] [GitHub]
Squad: "Squad: 100, 000+ questions for machine comprehension of text".
NarrativeQA: "The narrativeqa reading comprehension challenge".
Hotpotqa: "Hotpotqa: A dataset for diverse, explainable multi-hop question answering".
CoQA: "Coqa: A conversational question answering challenge".
NQ: "Natural questions: a benchmark for question answering research".
DuReader: "Dureader_robust: A chinese dataset towards evaluating robustness and generalization of machine reading comprehension in real-world applications".
RAGAS: "RAGAS: Automated Evaluation of Retrieval Augmented Generation".
"Why Does ChatGPT Fall Short in Providing Truthful Answers?".
Shen Zheng and Jie Huang et al. arXiv 2023. [Paper]
LAMA: "Language Models as Knowledge Bases?".
Kola: "Kola: Carefully Benchmarking World Knowledge of Large Language models".
WikiFact: "Assessing the Factual Accuracy of Generated Text".
Ben Goodrich et al. KDD 2019. [Paper]
ARC: "Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge".
QASC: "QASC: A Dataset for Question Answering via Sentence Composition".
MCTACO: ""Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding".
TRACIE: "Temporal Reasoning on Implicit Events from Distant Supervision".
TIMEDIAL: "TIMEDIAL: Temporal Commonsense Reasoning in Dialog".
HellaSWAG: "HellaSwag: Can a Machine Really Finish Your Sentence?".
PIQA: "PIQA: Reasoning about Physical Commonsense in Natural Language".
Pep-3k: "Modeling Semantic Plausibility by Injecting World Knowledge".
Social IQA: "Social IQa: Commonsense Reasoning about Social Interactions".
Maarten Sap and Hannah Rashkin et al. EMNLP 2019. [Paper] [Source]
CommonsenseQA: "CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge".
Alon Talmor and Jonathan Herzig et al. NAACL 2019. [Paper] [GitHub]
OpenBookQA: "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering".
"A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity".
"ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models".
Ning Bian et al. arXiv 2023. [Paper]
SNLI: "A large annotated corpus for learning natural language inference".
Samuel R. Bowman et al. EMNLP 2015. [Paper]
MultiNLI: "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference".
LogicNLI: "Diagnosing the First-Order Logical Reasoning Ability Through LogicNLI".
Jidong Tian and Yitian Li et al. EMNLP 2021.


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及 专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号