Awesome-LLMs-Evaluation-Papers

Awesome-LLMs-Evaluation-Papers

大型语言模型评估研究论文综述

该项目汇总了大型语言模型(LLMs)评估领域的前沿研究论文,涵盖知识能力、对齐性和安全性评估等方面。还包括特定领域的LLMs评估和综合评估平台介绍。旨在为研究人员提供全面的LLMs评估资源,推动语言模型的可靠发展,平衡社会效益与潜在风险。

LLMs评估大语言模型知识能力评估对齐性评估安全性评估Github开源项目

Awesome LLMs Evaluation Papers :bookmark_tabs:

The papers are organized according to our survey:

<p align="center"><strong>Evaluating Large Language Models: A Comprehensive Survey</strong></p> <p align="center">Zishan Guo*, Renren Jin*, Chuang Liu*, Yufei Huang, Dan Shi, Supryadi, </p> <p align="center">Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong†</p> <p align="center">Tianjin University</p> <p align="center">(*: Co-first authors, †: Corresponding author)</p> <div align=center> <img src="./imgs/Figure_1.png" style="zoom:30%"/> </div>

If you find our survey useful, please kindly cite our paper:

@article{guo2023evaluating, title={Evaluating Large Language Models: A Comprehensive Survey}, author={Guo, Zishan and Jin, Renren and Liu, Chuang and Huang, Yufei and Shi, Dan and Yu, Linhao and Liu, Yan and Li, Jiaxuan and Xiong, Bojian and Xiong, Deyi and others}, journal={arXiv preprint arXiv:2310.19736}, year={2023} }

Contributing to this paper list

Feel free to open an issue/PR or e-mail guozishan@tju.edu.cn, rrjin@tju.edu.cn, liuc_09@tju.edu.cn and dyxiong@tju.edu.cn if you find any missing areas, papers, or datasets. We will keep updating this list and survey.

Updates

  • [2023-10-30] Initial Paperlist for LLMs Evaluation from Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Supryadi, Linhao Yu, Jiaxuan Li, Bojian Xiong and Deyi Xiong.

Survey Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs.

This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that covers LLM evaluations on capabilities, alignment, safety, sand applicability.

We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks.

Markups

The paper proposes a dataset that can be used for LLMs evaluation.

The paper proposes an evaluation method that can be used for LLMs.

The paper proposes a platform for LLMs evaluation.

The paper examines the performance of LLMs in a particular domain.

Table of Contents

Related Surveys for LLMs Evaluation

  1. "Through the Lens of Core Competency: Survey on Evaluation of Large Language Models".

    Ziyu Zhuang et al. arXiv 2023. [Paper] [GitHub]

  2. "A Survey on Evaluation of Large Language Models".

    Yupeng Chang and Xu Wang et al. arXiv 2023. [Paper] [GitHub]

Papers

:books:Knowledge and Capability Evaluation

Question Answering

  1. Squad: "Squad: 100, 000+ questions for machine comprehension of text".

    Pranav Rajpurkar et al. EMNLP 2016. [Paper] [Source]

  2. NarrativeQA: "The narrativeqa reading comprehension challenge".

    Tomás Kociský et al. arXiv 2017. [Paper] [Github]

  3. Hotpotqa: "Hotpotqa: A dataset for diverse, explainable multi-hop question answering".

    Zhilin Yang et al. EMNLP 2018. [Paper] [Github]

  4. CoQA: "Coqa: A conversational question answering challenge".

    Siva Reddy et al. NAACL 2019. [Paper] [Github]

  5. NQ: "Natural questions: a benchmark for question answering research".

    Tom Kwiatkowski et al. [Paper] [Github]

  6. DuReader: "Dureader_robust: A chinese dataset towards evaluating robustness and generalization of machine reading comprehension in real-world applications".

    Hongxuan Tang et al. NAACL-HLT 2019. [Paper] [Github]

  7. RAGAS: "RAGAS: Automated Evaluation of Retrieval Augmented Generation".

    Shahul Es et al. arXiv 2023. [Paper] [Github]

  8. "Why Does ChatGPT Fall Short in Providing Truthful Answers?".

    Shen Zheng and Jie Huang et al. arXiv 2023. [Paper]

Knowledge Completion

  1. LAMA: "Language Models as Knowledge Bases?".

    In Kentaro Inui et al. EMNLP-IJCNLP 2019. [Paper] [GitHub]

  2. Kola: "Kola: Carefully Benchmarking World Knowledge of Large Language models".

    JiaFang Yu et al. arXiv 2023. [Paper] [Source]

  3. WikiFact: "Assessing the Factual Accuracy of Generated Text".

    Ben Goodrich et al. KDD 2019. [Paper]

Reasoning

Commonsense Reasoning
  1. ARC: "Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge".

    Peter Clark et al. arXiv 2018. [Paper] [GitHub]

  2. QASC: "QASC: A Dataset for Question Answering via Sentence Composition".

    Tushar Khot et al. AAAI 2020. [Paper] [GitHub]

  3. MCTACO: ""Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding".

    Ben Zhou et al. EMNLP 2019. [Paper] [Source]

  4. TRACIE: "Temporal Reasoning on Implicit Events from Distant Supervision".

    Ben Zhou et al. NAACL 2021. [Paper] [Source]

  5. TIMEDIAL: "TIMEDIAL: Temporal Commonsense Reasoning in Dialog".

    Lianhui Qin et al. ACL 2021. [Paper] [GitHub]

  6. HellaSWAG: "HellaSwag: Can a Machine Really Finish Your Sentence?".

    Rowan Zellers et al. ACL 2019. [Paper] [Source]

  7. PIQA: "PIQA: Reasoning about Physical Commonsense in Natural Language".

    Yonatan Bisk et al. AAAI 2020. [Paper] [Source]

  8. Pep-3k: "Modeling Semantic Plausibility by Injecting World Knowledge".

    Su Wang et al. NAACL-HLT 2018. [Paper] [GitHub]

  9. Social IQA: "Social IQa: Commonsense Reasoning about Social Interactions".

    Maarten Sap and Hannah Rashkin et al. EMNLP 2019. [Paper] [Source]

  10. CommonsenseQA: "CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge".

    Alon Talmor and Jonathan Herzig et al. NAACL 2019. [Paper] [GitHub]

  11. OpenBookQA: "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering".

    Todor Mihaylov et al. EMNLP 2018. [Paper] [Source]

  12. "A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity".

    Yejin Bang et al. arXiv 2023. [Paper] [GitHub]

  13. "ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models".

    Ning Bian et al. arXiv 2023. [Paper]

Logical Reasoning
  1. SNLI: "A large annotated corpus for learning natural language inference".

    Samuel R. Bowman et al. EMNLP 2015. [Paper]

  2. MultiNLI: "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference".

    Adina Williams et al. NAACL-HLT 2018. [Paper] [GitHub]

  3. LogicNLI: "Diagnosing the First-Order Logical Reasoning Ability Through LogicNLI".

    Jidong Tian and Yitian Li et al. EMNLP 2021.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多