MEALPY is the largest python library in the world for most of the cutting-edge meta-heuristic algorithms (nature-inspired algorithms, black-box optimization, global search optimizers, iterative learning algorithms, continuous optimization, derivative free optimization, gradient free optimization, zeroth order optimization, stochastic search optimization, random search optimization). These algorithms belong to population-based algorithms (PMA), which are the most popular algorithms in the field of approximate optimization.

Please include these citations if you plan to use this library:
@article{van2023mealpy, title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python}, author={Van Thieu, Nguyen and Mirjalili, Seyedali}, journal={Journal of Systems Architecture}, year={2023}, publisher={Elsevier}, doi={10.1016/j.sysarc.2023.102871} } @article{van2023groundwater, title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization}, author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai}, journal={Journal of Hydrology}, volume={617}, pages={129034}, year={2023}, publisher={Elsevier}, doi={https://doi.org/10.1016/j.jhydrol.2022.129034} } @article{ahmed2021comprehensive, title={A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem}, author={Ahmed, Ali Najah and Van Lam, To and Hung, Nguyen Duy and Van Thieu, Nguyen and Kisi, Ozgur and El-Shafie, Ahmed}, journal={Applied Soft Computing}, volume={105}, pages={107282}, year={2021}, publisher={Elsevier}, doi={10.1016/j.asoc.2021.107282} }
Our goals are to implement all classical as well as the state-of-the-art nature-inspired algorithms, create a simple interface that helps researchers access optimization algorithms as quickly as possible, and share knowledge of the optimization field with everyone without a fee. What you can do with mealpy:
$ pip install mealpy==3.0.1
$ pip install mealpy==2.5.4a6
$ git clone https://github.com/thieu1995/mealpy.git $ cd mealpy $ python setup.py install
$ pip install git+https://github.com/thieu1995/permetrics
After installation, you can import Mealpy as any other Python module:
</details>$ python >>> import mealpy >>> mealpy.__version__ >>> print(mealpy.get_all_optimizers()) >>> model = mealpy.get_optimizer_by_name("OriginalWOA")(epoch=100, pop_size=50)
Before dive into some examples, let me ask you a question. What type of problem are you trying to solve? Additionally, what would be the solution for your specific problem? Based on the table below, you can select an appropriate type of decision variables to use.
<div align="center">| Class | Syntax | Problem Types |
|---|---|---|
| FloatVar | FloatVar(lb=(-10., )*7, ub=(10., )*7, name="delta") | Continuous Problem |
| IntegerVar | IntegerVar(lb=(-10., )*7, ub=(10., )*7, name="delta") | LP, IP, NLP, QP, MIP |
| StringVar | StringVar(valid_sets=(("auto", "backward", "forward"), ("leaf", "branch", "root")), name="delta") | ML, AI-optimize |
| BinaryVar | BinaryVar(n_vars=11, name="delta") | Networks |
| BoolVar | BoolVar(n_vars=11, name="delta") | ML, AI-optimize |
| PermutationVar | PermutationVar(valid_set=(-10, -4, 10, 6, -2), name="delta") | Combinatorial Optimization |
| MixedSetVar | MixedSetVar(valid_sets=(("auto", 2, 3, "backward", True), (0, "tournament", "round-robin")), name="delta") | MIP, MILP |
| TransferBoolVar | TransferBoolVar(n_vars=11, name="delta", tf_func="sstf_02") | ML, AI-optimize, Feature |
| TransferBinaryVar | TransferBinaryVar(n_vars=11, name="delta", tf_func="vstf_04") | Networks, Feature Selection |
Let's go through a basic and advanced example.
Using Problem dict
from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100., )*30, ub=(100., )*30), "minmax": "min", "log_to": None, } ## Run the algorithm model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")
Define a custom Problem class
Please note that, there is no more generate_position, amend_solution, and fitness_function in Problem class.
We take care everything under the DataType Class above. Just choose which one fit for your problem.
We recommend you define a custom class that inherit Problem class if your decision variable is not FloatVar
from mealpy import Problem, FloatVar, BBO import numpy as np # Our custom problem class class Squared(Problem): def __init__(self, bounds=None, minmax="min", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, solution): x = self.decode_solution(solution)["my_var"] return np.sum(x ** 2) ## Now, we define an algorithm, and pass an instance of our *Squared* class as the problem argument. bound = FloatVar(lb=(-10., )*20, ub=(10., )*20, name="my_var") problem = Squared(bounds=bound, minmax="min", name="Squared", data="Amazing") model = BBO.OriginalBBO(epoch=100, pop_size=20) g_best = model.solve(problem)
You can set random seed number for each run of single optimizer.
model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem=problem, seed=10) # Default seed=None
from mealpy import FloatVar, SHADE import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-1000., )*10000, ub=(1000.,)*10000), # 10000 dimensions "minmax": "min", "log_to": "console", } ## Run the algorithm optimizer = SHADE.OriginalSHADE(epoch=10000, pop_size=100) g_best = optimizer.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")
Please read the article titled MEALPY: An open-source library for latest meta-heuristic algorithms in Python to gain a clear understanding of the concept of parallelization (distributed optimization) in metaheuristics. Not all metaheuristics can be run in parallel.
from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100., )*100, ub=(100., )*100), "minmax": "min", "log_to": "console", } ## Run distributed SMA algorithm using 10 threads optimizer = SMA.OriginalSMA(epoch=10000, pop_size=100, pr=0.03) optimizer.solve(problem, mode="thread", n_workers=10) # Distributed to 10 threads print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}") ## Run distributed SMA algorithm using 8 CPUs (cores) optimizer.solve(problem, mode="process", n_workers=8) # Distributed to 8 cores print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}")
In this example, we use SMA optimize to optimize the hyper-parameters of SVC model.
from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import datasets, metrics from mealpy import FloatVar, StringVar, IntegerVar, BoolVar, MixedSetVar, SMA, Problem # Load the data set; In this example, the breast cancer dataset is loaded. X, y = datasets.load_breast_cancer(return_X_y=True) # Create training and test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) data = { "X_train": X_train_std, "X_test": X_test_std, "y_train": y_train, "y_test": y_test } class SvmOptimizedProblem(Problem): def __init__(self, bounds=None, minmax="max", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, x): x_decoded = self.decode_solution(x) C_paras, kernel_paras = x_decoded["C_paras"], x_decoded["kernel_paras"] degree, gamma, probability = x_decoded["degree_paras"], x_decoded["gamma_paras"], x_decoded["probability_paras"] svc = SVC(C=C_paras, kernel=kernel_paras, degree=degree, gamma=gamma, probability=probability, random_state=1) # Fit the model svc.fit(self.data["X_train"], self.data["y_train"]) # Make the predictions y_predict = svc.predict(self.data["X_test"]) # Measure the performance return metrics.accuracy_score(self.data["y_test"], y_predict) my_bounds = [ FloatVar(lb=0.01, ub=1000., name="C_paras"), StringVar(valid_sets=('linear', 'poly', 'rbf', 'sigmoid'), name="kernel_paras"), IntegerVar(lb=1, ub=5, name="degree_paras"), MixedSetVar(valid_sets=('scale', 'auto', 0.01, 0.05, 0.1, 0.5, 1.0), name="gamma_paras"), BoolVar(n_vars=1, name="probability_paras"), ] problem = SvmOptimizedProblem(bounds=my_bounds, minmax="max", data=data) model = SMA.OriginalSMA(epoch=100, pop_size=20) model.solve(problem) print(f"Best agent: {model.g_best}") print(f"Best solution: {model.g_best.solution}") print(f"Best accuracy: {model.g_best.target.fitness}") print(f"Best parameters: {model.problem.decode_solution(model.g_best.solution)}")
Traveling Salesman Problem (TSP)
In the context of the Mealpy for the Traveling Salesman Problem (TSP), a solution is a possible route that represents a tour of visiting all the cities exactly once and returning to the starting city. The solution is typically represented as a permutation of the cities, where each city appears exactly once in the permutation.
For example, let's consider a TSP instance with 5 cities labeled as A, B, C, D, and E. A possible solution could be
represented as the permutation [A, B, D, E, C], which indicates the order in which the cities are visited. This
solution suggests that the tour starts at city A, then moves to city B, then D, E, and finally C before returning to city A.
import numpy as np from mealpy import PermutationVar, WOA, Problem # Define the positions of the cities city_positions = np.array([[60, 200], [180, 200], [80, 180], [140, 180], [20, 160], [100, 160], [200, 160], [140, 140], [40, 120], [100, 120], [180, 100], [60, 80], [120, 80], [180, 60], [20, 40], [100, 40], [200, 40], [20, 20], [60, 20], [160, 20]]) num_cities = len(city_positions) data = { "city_positions": city_positions, "num_cities": num_cities, } class


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国 界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号