mealpy

mealpy

元启发式算法优化库实现多种优化算法

MEALPY实现了215种元启发式算法,是当前最全面的Python优化库之一。它可解决连续和离散优化等多种问题,支持参数分析、性能评估和收敛分析。该库设计简洁,提供结果导出和模型导入导出功能,适用于各类优化任务。MEALPY兼容Python 3.7+,依赖numpy等科学计算库。

MEALPY元启发式算法优化算法Python库开源软件Github开源项目
<p align="center"> <img style="height:400px;" src="https://thieu1995.github.io/post/2022-04/19-mealpy-tutorials/mealpy5-nobg.png" alt="MEALPY"/> </p>

GitHub release Wheel PyPI version PyPI - Python Version PyPI - Status PyPI - Downloads Downloads Tests & Publishes to PyPI GitHub Release Date Documentation Status Chat Average time to resolve an issue Percentage of issues still open GitHub contributors GitTutorial DOI License: GPL v3

Introduction

MEALPY is the largest python library in the world for most of the cutting-edge meta-heuristic algorithms (nature-inspired algorithms, black-box optimization, global search optimizers, iterative learning algorithms, continuous optimization, derivative free optimization, gradient free optimization, zeroth order optimization, stochastic search optimization, random search optimization). These algorithms belong to population-based algorithms (PMA), which are the most popular algorithms in the field of approximate optimization.

  • Free software: GNU General Public License (GPL) V3 license
  • Total algorithms: 215 (190 official (original, hybrid, variants), 25 developed)
  • Documentation: https://mealpy.readthedocs.io/en/latest/
  • Python versions: >=3.7x
  • Dependencies: numpy, scipy, pandas, matplotlib

MEALPY3-0-0

Citation Request

Please include these citations if you plan to use this library:

@article{van2023mealpy, title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python}, author={Van Thieu, Nguyen and Mirjalili, Seyedali}, journal={Journal of Systems Architecture}, year={2023}, publisher={Elsevier}, doi={10.1016/j.sysarc.2023.102871} } @article{van2023groundwater, title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization}, author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai}, journal={Journal of Hydrology}, volume={617}, pages={129034}, year={2023}, publisher={Elsevier}, doi={https://doi.org/10.1016/j.jhydrol.2022.129034} } @article{ahmed2021comprehensive, title={A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem}, author={Ahmed, Ali Najah and Van Lam, To and Hung, Nguyen Duy and Van Thieu, Nguyen and Kisi, Ozgur and El-Shafie, Ahmed}, journal={Applied Soft Computing}, volume={105}, pages={107282}, year={2021}, publisher={Elsevier}, doi={10.1016/j.asoc.2021.107282} }

Usage

<details><summary><h2>Goals</h2></summary>

Our goals are to implement all classical as well as the state-of-the-art nature-inspired algorithms, create a simple interface that helps researchers access optimization algorithms as quickly as possible, and share knowledge of the optimization field with everyone without a fee. What you can do with mealpy:

  • Analyse parameters of meta-heuristic algorithms.
  • Perform Qualitative and Quantitative Analysis of algorithms.
  • Analyse rate of convergence of algorithms.
  • Test and Analyse the scalability and the robustness of algorithms.
  • Save results in various formats (csv, json, pickle, png, pdf, jpeg)
  • Export and import models can also be done with Mealpy.
  • Solve any optimization problem
</details> <details><summary><h2>Installation</h2></summary>
$ pip install mealpy==3.0.1
  • Install the alpha/beta version from PyPi
$ pip install mealpy==2.5.4a6
  • Install the pre-release version directly from the source code:
$ git clone https://github.com/thieu1995/mealpy.git $ cd mealpy $ python setup.py install
  • In case, you want to install the development version from Github:
$ pip install git+https://github.com/thieu1995/permetrics

After installation, you can import Mealpy as any other Python module:

$ python >>> import mealpy >>> mealpy.__version__ >>> print(mealpy.get_all_optimizers()) >>> model = mealpy.get_optimizer_by_name("OriginalWOA")(epoch=100, pop_size=50)
</details>

Examples

Before dive into some examples, let me ask you a question. What type of problem are you trying to solve? Additionally, what would be the solution for your specific problem? Based on the table below, you can select an appropriate type of decision variables to use.

<div align="center">
ClassSyntaxProblem Types
FloatVarFloatVar(lb=(-10., )*7, ub=(10., )*7, name="delta")Continuous Problem
IntegerVarIntegerVar(lb=(-10., )*7, ub=(10., )*7, name="delta")LP, IP, NLP, QP, MIP
StringVarStringVar(valid_sets=(("auto", "backward", "forward"), ("leaf", "branch", "root")), name="delta")ML, AI-optimize
BinaryVarBinaryVar(n_vars=11, name="delta")Networks
BoolVarBoolVar(n_vars=11, name="delta")ML, AI-optimize
PermutationVarPermutationVar(valid_set=(-10, -4, 10, 6, -2), name="delta")Combinatorial Optimization
MixedSetVarMixedSetVar(valid_sets=(("auto", 2, 3, "backward", True), (0, "tournament", "round-robin")), name="delta")MIP, MILP
TransferBoolVarTransferBoolVar(n_vars=11, name="delta", tf_func="sstf_02")ML, AI-optimize, Feature
TransferBinaryVarTransferBinaryVar(n_vars=11, name="delta", tf_func="vstf_04")Networks, Feature Selection
</div>

Let's go through a basic and advanced example.

Simple Benchmark Function

Using Problem dict

from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100., )*30, ub=(100., )*30), "minmax": "min", "log_to": None, } ## Run the algorithm model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")

Define a custom Problem class

Please note that, there is no more generate_position, amend_solution, and fitness_function in Problem class. We take care everything under the DataType Class above. Just choose which one fit for your problem. We recommend you define a custom class that inherit Problem class if your decision variable is not FloatVar

from mealpy import Problem, FloatVar, BBO import numpy as np # Our custom problem class class Squared(Problem): def __init__(self, bounds=None, minmax="min", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, solution): x = self.decode_solution(solution)["my_var"] return np.sum(x ** 2) ## Now, we define an algorithm, and pass an instance of our *Squared* class as the problem argument. bound = FloatVar(lb=(-10., )*20, ub=(10., )*20, name="my_var") problem = Squared(bounds=bound, minmax="min", name="Squared", data="Amazing") model = BBO.OriginalBBO(epoch=100, pop_size=20) g_best = model.solve(problem)

Set Seed for Optimizer (So many people asking for this feature)

You can set random seed number for each run of single optimizer.

model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem=problem, seed=10) # Default seed=None

Large-Scale Optimization

from mealpy import FloatVar, SHADE import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-1000., )*10000, ub=(1000.,)*10000), # 10000 dimensions "minmax": "min", "log_to": "console", } ## Run the algorithm optimizer = SHADE.OriginalSHADE(epoch=10000, pop_size=100) g_best = optimizer.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")

Distributed Optimization / Parallelization Optimization

Please read the article titled MEALPY: An open-source library for latest meta-heuristic algorithms in Python to gain a clear understanding of the concept of parallelization (distributed optimization) in metaheuristics. Not all metaheuristics can be run in parallel.

from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100., )*100, ub=(100., )*100), "minmax": "min", "log_to": "console", } ## Run distributed SMA algorithm using 10 threads optimizer = SMA.OriginalSMA(epoch=10000, pop_size=100, pr=0.03) optimizer.solve(problem, mode="thread", n_workers=10) # Distributed to 10 threads print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}") ## Run distributed SMA algorithm using 8 CPUs (cores) optimizer.solve(problem, mode="process", n_workers=8) # Distributed to 8 cores print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}")

The Benefit Of Using Custom Problem Class (BEST PRACTICE)

Optimize Machine Learning model

In this example, we use SMA optimize to optimize the hyper-parameters of SVC model.

from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import datasets, metrics from mealpy import FloatVar, StringVar, IntegerVar, BoolVar, MixedSetVar, SMA, Problem # Load the data set; In this example, the breast cancer dataset is loaded. X, y = datasets.load_breast_cancer(return_X_y=True) # Create training and test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) data = { "X_train": X_train_std, "X_test": X_test_std, "y_train": y_train, "y_test": y_test } class SvmOptimizedProblem(Problem): def __init__(self, bounds=None, minmax="max", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, x): x_decoded = self.decode_solution(x) C_paras, kernel_paras = x_decoded["C_paras"], x_decoded["kernel_paras"] degree, gamma, probability = x_decoded["degree_paras"], x_decoded["gamma_paras"], x_decoded["probability_paras"] svc = SVC(C=C_paras, kernel=kernel_paras, degree=degree, gamma=gamma, probability=probability, random_state=1) # Fit the model svc.fit(self.data["X_train"], self.data["y_train"]) # Make the predictions y_predict = svc.predict(self.data["X_test"]) # Measure the performance return metrics.accuracy_score(self.data["y_test"], y_predict) my_bounds = [ FloatVar(lb=0.01, ub=1000., name="C_paras"), StringVar(valid_sets=('linear', 'poly', 'rbf', 'sigmoid'), name="kernel_paras"), IntegerVar(lb=1, ub=5, name="degree_paras"), MixedSetVar(valid_sets=('scale', 'auto', 0.01, 0.05, 0.1, 0.5, 1.0), name="gamma_paras"), BoolVar(n_vars=1, name="probability_paras"), ] problem = SvmOptimizedProblem(bounds=my_bounds, minmax="max", data=data) model = SMA.OriginalSMA(epoch=100, pop_size=20) model.solve(problem) print(f"Best agent: {model.g_best}") print(f"Best solution: {model.g_best.solution}") print(f"Best accuracy: {model.g_best.target.fitness}") print(f"Best parameters: {model.problem.decode_solution(model.g_best.solution)}")

Solving Combinatorial Problems

Traveling Salesman Problem (TSP)

In the context of the Mealpy for the Traveling Salesman Problem (TSP), a solution is a possible route that represents a tour of visiting all the cities exactly once and returning to the starting city. The solution is typically represented as a permutation of the cities, where each city appears exactly once in the permutation.

For example, let's consider a TSP instance with 5 cities labeled as A, B, C, D, and E. A possible solution could be represented as the permutation [A, B, D, E, C], which indicates the order in which the cities are visited. This solution suggests that the tour starts at city A, then moves to city B, then D, E, and finally C before returning to city A.

import numpy as np from mealpy import PermutationVar, WOA, Problem # Define the positions of the cities city_positions = np.array([[60, 200], [180, 200], [80, 180], [140, 180], [20, 160], [100, 160], [200, 160], [140, 140], [40, 120], [100, 120], [180, 100], [60, 80], [120, 80], [180, 60], [20, 40], [100, 40], [200, 40], [20, 20], [60, 20], [160, 20]]) num_cities = len(city_positions) data = { "city_positions": city_positions, "num_cities": num_cities, } class

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多