mealpy

mealpy

元启发式算法优化库实现多种优化算法

MEALPY实现了215种元启发式算法,是当前最全面的Python优化库之一。它可解决连续和离散优化等多种问题,支持参数分析、性能评估和收敛分析。该库设计简洁,提供结果导出和模型导入导出功能,适用于各类优化任务。MEALPY兼容Python 3.7+,依赖numpy等科学计算库。

MEALPY元启发式算法优化算法Python库开源软件Github开源项目
<p align="center"> <img style="height:400px;" src="https://thieu1995.github.io/post/2022-04/19-mealpy-tutorials/mealpy5-nobg.png" alt="MEALPY"/> </p>

GitHub release Wheel PyPI version PyPI - Python Version PyPI - Status PyPI - Downloads Downloads Tests & Publishes to PyPI GitHub Release Date Documentation Status Chat Average time to resolve an issue Percentage of issues still open GitHub contributors GitTutorial DOI License: GPL v3

Introduction

MEALPY is the largest python library in the world for most of the cutting-edge meta-heuristic algorithms (nature-inspired algorithms, black-box optimization, global search optimizers, iterative learning algorithms, continuous optimization, derivative free optimization, gradient free optimization, zeroth order optimization, stochastic search optimization, random search optimization). These algorithms belong to population-based algorithms (PMA), which are the most popular algorithms in the field of approximate optimization.

  • Free software: GNU General Public License (GPL) V3 license
  • Total algorithms: 215 (190 official (original, hybrid, variants), 25 developed)
  • Documentation: https://mealpy.readthedocs.io/en/latest/
  • Python versions: >=3.7x
  • Dependencies: numpy, scipy, pandas, matplotlib

MEALPY3-0-0

Citation Request

Please include these citations if you plan to use this library:

@article{van2023mealpy, title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python}, author={Van Thieu, Nguyen and Mirjalili, Seyedali}, journal={Journal of Systems Architecture}, year={2023}, publisher={Elsevier}, doi={10.1016/j.sysarc.2023.102871} } @article{van2023groundwater, title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization}, author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai}, journal={Journal of Hydrology}, volume={617}, pages={129034}, year={2023}, publisher={Elsevier}, doi={https://doi.org/10.1016/j.jhydrol.2022.129034} } @article{ahmed2021comprehensive, title={A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem}, author={Ahmed, Ali Najah and Van Lam, To and Hung, Nguyen Duy and Van Thieu, Nguyen and Kisi, Ozgur and El-Shafie, Ahmed}, journal={Applied Soft Computing}, volume={105}, pages={107282}, year={2021}, publisher={Elsevier}, doi={10.1016/j.asoc.2021.107282} }

Usage

<details><summary><h2>Goals</h2></summary>

Our goals are to implement all classical as well as the state-of-the-art nature-inspired algorithms, create a simple interface that helps researchers access optimization algorithms as quickly as possible, and share knowledge of the optimization field with everyone without a fee. What you can do with mealpy:

  • Analyse parameters of meta-heuristic algorithms.
  • Perform Qualitative and Quantitative Analysis of algorithms.
  • Analyse rate of convergence of algorithms.
  • Test and Analyse the scalability and the robustness of algorithms.
  • Save results in various formats (csv, json, pickle, png, pdf, jpeg)
  • Export and import models can also be done with Mealpy.
  • Solve any optimization problem
</details> <details><summary><h2>Installation</h2></summary>
$ pip install mealpy==3.0.1
  • Install the alpha/beta version from PyPi
$ pip install mealpy==2.5.4a6
  • Install the pre-release version directly from the source code:
$ git clone https://github.com/thieu1995/mealpy.git $ cd mealpy $ python setup.py install
  • In case, you want to install the development version from Github:
$ pip install git+https://github.com/thieu1995/permetrics

After installation, you can import Mealpy as any other Python module:

$ python >>> import mealpy >>> mealpy.__version__ >>> print(mealpy.get_all_optimizers()) >>> model = mealpy.get_optimizer_by_name("OriginalWOA")(epoch=100, pop_size=50)
</details>

Examples

Before dive into some examples, let me ask you a question. What type of problem are you trying to solve? Additionally, what would be the solution for your specific problem? Based on the table below, you can select an appropriate type of decision variables to use.

<div align="center">
ClassSyntaxProblem Types
FloatVarFloatVar(lb=(-10., )*7, ub=(10., )*7, name="delta")Continuous Problem
IntegerVarIntegerVar(lb=(-10., )*7, ub=(10., )*7, name="delta")LP, IP, NLP, QP, MIP
StringVarStringVar(valid_sets=(("auto", "backward", "forward"), ("leaf", "branch", "root")), name="delta")ML, AI-optimize
BinaryVarBinaryVar(n_vars=11, name="delta")Networks
BoolVarBoolVar(n_vars=11, name="delta")ML, AI-optimize
PermutationVarPermutationVar(valid_set=(-10, -4, 10, 6, -2), name="delta")Combinatorial Optimization
MixedSetVarMixedSetVar(valid_sets=(("auto", 2, 3, "backward", True), (0, "tournament", "round-robin")), name="delta")MIP, MILP
TransferBoolVarTransferBoolVar(n_vars=11, name="delta", tf_func="sstf_02")ML, AI-optimize, Feature
TransferBinaryVarTransferBinaryVar(n_vars=11, name="delta", tf_func="vstf_04")Networks, Feature Selection
</div>

Let's go through a basic and advanced example.

Simple Benchmark Function

Using Problem dict

from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100., )*30, ub=(100., )*30), "minmax": "min", "log_to": None, } ## Run the algorithm model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")

Define a custom Problem class

Please note that, there is no more generate_position, amend_solution, and fitness_function in Problem class. We take care everything under the DataType Class above. Just choose which one fit for your problem. We recommend you define a custom class that inherit Problem class if your decision variable is not FloatVar

from mealpy import Problem, FloatVar, BBO import numpy as np # Our custom problem class class Squared(Problem): def __init__(self, bounds=None, minmax="min", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, solution): x = self.decode_solution(solution)["my_var"] return np.sum(x ** 2) ## Now, we define an algorithm, and pass an instance of our *Squared* class as the problem argument. bound = FloatVar(lb=(-10., )*20, ub=(10., )*20, name="my_var") problem = Squared(bounds=bound, minmax="min", name="Squared", data="Amazing") model = BBO.OriginalBBO(epoch=100, pop_size=20) g_best = model.solve(problem)

Set Seed for Optimizer (So many people asking for this feature)

You can set random seed number for each run of single optimizer.

model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem=problem, seed=10) # Default seed=None

Large-Scale Optimization

from mealpy import FloatVar, SHADE import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-1000., )*10000, ub=(1000.,)*10000), # 10000 dimensions "minmax": "min", "log_to": "console", } ## Run the algorithm optimizer = SHADE.OriginalSHADE(epoch=10000, pop_size=100) g_best = optimizer.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")

Distributed Optimization / Parallelization Optimization

Please read the article titled MEALPY: An open-source library for latest meta-heuristic algorithms in Python to gain a clear understanding of the concept of parallelization (distributed optimization) in metaheuristics. Not all metaheuristics can be run in parallel.

from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100., )*100, ub=(100., )*100), "minmax": "min", "log_to": "console", } ## Run distributed SMA algorithm using 10 threads optimizer = SMA.OriginalSMA(epoch=10000, pop_size=100, pr=0.03) optimizer.solve(problem, mode="thread", n_workers=10) # Distributed to 10 threads print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}") ## Run distributed SMA algorithm using 8 CPUs (cores) optimizer.solve(problem, mode="process", n_workers=8) # Distributed to 8 cores print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}")

The Benefit Of Using Custom Problem Class (BEST PRACTICE)

Optimize Machine Learning model

In this example, we use SMA optimize to optimize the hyper-parameters of SVC model.

from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import datasets, metrics from mealpy import FloatVar, StringVar, IntegerVar, BoolVar, MixedSetVar, SMA, Problem # Load the data set; In this example, the breast cancer dataset is loaded. X, y = datasets.load_breast_cancer(return_X_y=True) # Create training and test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) data = { "X_train": X_train_std, "X_test": X_test_std, "y_train": y_train, "y_test": y_test } class SvmOptimizedProblem(Problem): def __init__(self, bounds=None, minmax="max", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, x): x_decoded = self.decode_solution(x) C_paras, kernel_paras = x_decoded["C_paras"], x_decoded["kernel_paras"] degree, gamma, probability = x_decoded["degree_paras"], x_decoded["gamma_paras"], x_decoded["probability_paras"] svc = SVC(C=C_paras, kernel=kernel_paras, degree=degree, gamma=gamma, probability=probability, random_state=1) # Fit the model svc.fit(self.data["X_train"], self.data["y_train"]) # Make the predictions y_predict = svc.predict(self.data["X_test"]) # Measure the performance return metrics.accuracy_score(self.data["y_test"], y_predict) my_bounds = [ FloatVar(lb=0.01, ub=1000., name="C_paras"), StringVar(valid_sets=('linear', 'poly', 'rbf', 'sigmoid'), name="kernel_paras"), IntegerVar(lb=1, ub=5, name="degree_paras"), MixedSetVar(valid_sets=('scale', 'auto', 0.01, 0.05, 0.1, 0.5, 1.0), name="gamma_paras"), BoolVar(n_vars=1, name="probability_paras"), ] problem = SvmOptimizedProblem(bounds=my_bounds, minmax="max", data=data) model = SMA.OriginalSMA(epoch=100, pop_size=20) model.solve(problem) print(f"Best agent: {model.g_best}") print(f"Best solution: {model.g_best.solution}") print(f"Best accuracy: {model.g_best.target.fitness}") print(f"Best parameters: {model.problem.decode_solution(model.g_best.solution)}")

Solving Combinatorial Problems

Traveling Salesman Problem (TSP)

In the context of the Mealpy for the Traveling Salesman Problem (TSP), a solution is a possible route that represents a tour of visiting all the cities exactly once and returning to the starting city. The solution is typically represented as a permutation of the cities, where each city appears exactly once in the permutation.

For example, let's consider a TSP instance with 5 cities labeled as A, B, C, D, and E. A possible solution could be represented as the permutation [A, B, D, E, C], which indicates the order in which the cities are visited. This solution suggests that the tour starts at city A, then moves to city B, then D, E, and finally C before returning to city A.

import numpy as np from mealpy import PermutationVar, WOA, Problem # Define the positions of the cities city_positions = np.array([[60, 200], [180, 200], [80, 180], [140, 180], [20, 160], [100, 160], [200, 160], [140, 140], [40, 120], [100, 120], [180, 100], [60, 80], [120, 80], [180, 60], [20, 40], [100, 40], [200, 40], [20, 20], [60, 20], [160, 20]]) num_cities = len(city_positions) data = { "city_positions": city_positions, "num_cities": num_cities, } class

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多