lora-serialization

lora-serialization

LoRaWAN 数据编解码库,简化物联网通信

lora-serialization 是一个开源的 LoRaWAN 数据编解码库,专为 The Things Network 设计。该库支持 Arduino 设备和 TTN 平台间的数据转换,包括时间戳、GPS 坐标、温度等多种类型。通过提供全面的单元测试和便捷的 LoraMessage 类,它显著简化了物联网应用的数据处理过程,提高了开发效率。适用于需要可靠数据传输的各类 LoRaWAN 项目。

LoRaWAN序列化解序列化ArduinoThe Things NetworkGithub开源项目

LoRaWAN serialization/deserialization library for The Things Network

Build Status Coverage Status semantic-release

This fully unit-tested library allows you to encode your data on the Arduino side and decode it on the TTN side. It provides both a C-based encoder and a JavaScript-based decoder.

Since version 2.2.0 there is also an encoder for the TTN side.

In short

Encoding on Arduino, decoding in TTN

Arduino side:

#include "LoraMessage.h" LoraMessage message; message .addUnixtime(1467632413) .addLatLng(-33.905052, 151.26641); lora_send_bytes(message.getBytes(), message.getLength()); delete message;

TTN side:

function decodeUplink(input) { // decoder function according to https://www.thethingsindustries.com/docs/integrations/payload-formatters/javascript/uplink/ // input has the following structure: // { // "bytes": [1, 2, 3], // FRMPayload (byte array) // "fPort": 1 // } var data = decode(input.bytes, [unixtime, latLng], ['time', 'coords']); return {data:data} } // include content from src/decoder.js: var bytesToInt = function(bytes) { var i = 0; for (var x = 0; x < bytes.length; x++) { i |= +(bytes[x] << (x * 8)); } return i; }; ...

Encoding in TTN

TTN side:

// include src/encoder.js var bytes = encode([timestamp, [latitude, longitude]], [unixtime, latLng]); // bytes is of type Buffer

With the convenience class

// include src/encoder.js // include src/LoraMessage.js var bytes = new LoraMessage(encoder) .addUnixtime(1467632413) .addLatLng(-33.905052, 151.26641) .addBitmap(true, true, false, true) .getBytes(); // bytes = <Buffer 1d 4b 7a 57 64 a6 fa fd 6a 24 04 09 d0>

and then decoding as usual:

var result = decoder.decode( bytes, [decoder.unixtime, decoder.latLng, decoder.bitmap], ['time', 'coords', 'heaters'] ); // result = // { time: 1467632413, // coords: [ -33.905052, 151.26641 ], // heaters: // { a: true, // b: true, // c: false, // d: true, // e: false, // f: false, // g: false, // h: false } }

General Usage

Unix time (4 bytes)

Serializes/deserializes a unix time (seconds)

#include "LoraEncoder.h" byte buffer[4]; LoraEncoder encoder(buffer); encoder.writeUnixtime(1467632413); // buffer == {0x1d, 0x4b, 0x7a, 0x57}

and then in the TTN frontend, use the following method:

unixtime(input.bytes.slice(x, x + 4)) // 1467632413

GPS coordinates (8 bytes)

Serializes/deserializes coordinates (latitude/longitude) with a precision of 6 decimals.

#include "LoraEncoder.h" byte buffer[8]; LoraEncoder encoder(buffer); encoder.writeLatLng(-33.905052, 151.26641); // buffer == {0x64, 0xa6, 0xfa, 0xfd, 0x6a, 0x24, 0x04, 0x09}

and then in the TTN frontend, use the following method:

latLng(input.bytes.slice(x, x + 8)) // [-33.905052, 151.26641]

Unsigned 8bit Integer (1 byte)

Serializes/deserializes an unsigned 8bit integer.

#include "LoraEncoder.h" byte buffer[1]; LoraEncoder encoder(buffer); uint8_t i = 10; encoder.writeUint8(i); // buffer == {0x0A}

and then in the TTN frontend, use the following method:

uint8(input.bytes.slice(x, x + 1)) // 10

Unsigned 16bit Integer (2 bytes)

Serializes/deserializes an unsigned 16bit integer.

#include "LoraEncoder.h" byte buffer[2]; LoraEncoder encoder(buffer); uint16_t i = 23453; encoder.writeUint16(i); // buffer == {0x9d, 0x5b}

and then in the TTN frontend, use the following method:

uint16(input.bytes.slice(x, x + 2)) // 23453

Unsigned 32bit Integer (4 bytes)

Serializes/deserializes an unsigned 32bit integer.

#include "LoraEncoder.h" byte buffer[4]; LoraEncoder encoder(buffer); uint32_t i = 2864434397; encoder.writeUint32(i); // buffer == {0xdd, 0xcc, 0xbb, 0xaa}

and then in the TTN frontend, use the following method:

uint32(input.bytes.slice(x, x + 4)) // 2864434397

Temperature (2 bytes)

Serializes/deserializes a temperature reading between -327.68 and +327.67 (inclusive) with a precision of 2 decimals.

#include "LoraEncoder.h" byte buffer[2]; LoraEncoder encoder(buffer); encoder.writeTemperature(-123.45); // buffer == {0xcf, 0xc7}

and then in the TTN frontend, use the following method:

temperature(input.bytes.slice(x, x + 2)) // -123.45

Humidity (2 bytes)

Serializes/deserializes a humidity reading between 0 and 100 (inclusive) with a precision of 2 decimals.

#include "LoraEncoder.h" byte buffer[2]; LoraEncoder encoder(buffer); encoder.writeHumidity(99.99); // buffer == {0x0f, 0x27}

and then in the TTN frontend, use the following method:

humidity(input.bytes.slice(x, x + 2)) // 99.99

Full float (4 bytes)

Serializes/deserializes a full 4-byte float.

#include "LoraEncoder.h" byte buffer[4]; LoraEncoder encoder(buffer); encoder.writeRawFloat(99.99); // buffer == {0xe1, 0xfa, 0xc7, 0x42}

and then in the TTN frontend, use the following method:

rawfloat(input.bytes.slice(x, x + 4)) // 99.99

Bitmap (1 byte)

Serializes/deserializes a bitmap containing between 0 and 8 different flags.

#include "LoraEncoder.h" byte buffer[1]; LoraEncoder encoder(buffer); encoder.writeBitmap(true, false, false, false, false, false, false, false); // buffer == {0x80}

and then in the TTN frontend, use the following method:

bitmap(input.bytes.slice(x, x + 1)) // { a: true, b: false, c: false, d: false, e: false, f: false, g: false, h: false }

Composition

On the Arduino side

The decoder allows you to write more than one value to a byte array:

#include "LoraEncoder.h" byte buffer[19]; LoraEncoder encoder(buffer); encoder.writeUnixtime(1467632413); encoder.writeLatLng(-33.905052, 151.26641); encoder.writeUint8(10); encoder.writeUint16(23453); encoder.writeUint32(2864434397); encoder.writeTemperature(80.12); encoder.writeHumidity(99.99); encoder.writeRawFloat(99.99); encoder.writeBitmap(true, false, false, false, false, false, false, false); /* buffer == { 0x1d, 0x4b, 0x7a, 0x57, // Unixtime 0x64, 0xa6, 0xfa, 0xfd, 0x6a, 0x24, 0x04, 0x09, // latitude,longitude 0x0A, // Uint8 0x9d, 0x5b, // Uint16 0xdd, 0xcc, 0xbb, 0xaa, // Uint32 0x1f, 0x4c, // temperature 0x0f, 0x27, // humidity 0xe1, 0xfa, 0xc7, 0x42, // 4-byte float 0x80 // bitmap } */

Convenience class LoraMessage

There is a convenience class that represents a LoraMessage that you can add readings to:

#include "LoraMessage.h" LoraMessage message; message .addUnixtime(1467632413) .addLatLng(-33.905052, 151.26641) .addUint8(10) .addUint16(23453) .addUint32(2864434397) .addTemperature(80.12) .addHumidity(99.99) .addRawFloat(99.99) .addBitmap(false, false, false, false, false, false, true, false); send(message.getBytes(), message.getLength()); /* getBytes() == { 0x1d, 0x4b, 0x7a, 0x57, // Unixtime 0x64, 0xa6, 0xfa, 0xfd, 0x6a, 0x24, 0x04, 0x09, // latitude,longitude 0x0A, // Uint8 0x9d, 0x5b, // Uint16 0xdd, 0xcc, 0xbb, 0xaa, // Uint32 0x1f, 0x4c, // temperature 0x0f, 0x27, // humidity 0xe1, 0xfa, 0xc7, 0x42, // 4-byte float 0xfd // Bitmap } and getLength() == 28 */

Composition in the TTN decoder frontend with the decode method

The decode method allows you to specify a mask for the incoming byte buffer (that was generated by this library) and apply decoding functions accordingly.

decode(byte Array, mask Array [,mapping Array])

Example

Paste everything from src/decoder.js into the decoder method and use like this:

function (bytes) { // code from src/decoder.js here return decode(bytes, [latLng, unixtime], ['coords', 'time']); }

This maps the incoming byte buffer of 12 bytes to a sequence of one latLng (8 bytes) and one unixtime (4 bytes) sequence and maps the first one to a key coords and the second to a key time.

You can use: 64 A6 FA FD 6A 24 04 09 1D 4B 7A 57 for testing, and it will result in:

{ "coords": [ -33.905052, 151.26641 ], "time": 1467632413 }
Example decoder in the TTN console

Set up your decoder in the console: TTN console decoder example

Example converter in the TTN console

The decode method already does most of the necessary transformations, so in most cases you can just pass the data through: TTN console converter example

Development

  • Install the dependencies via yarn
  • Run the unit tests (C) via yarn run test:c
  • Run the unit tests (JavaScript) via yarn test
  • Check the coverage (JavaScript) via yarn coverage (see coverage/lcov-report)

The CI will kick off once you create a pull request

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多