telepresence

telepresence

Kubernetes微服务本地开发环境集成工具

Telepresence为Kubernetes微服务开发提供无限扩展的环境。该工具支持在本地运行单个服务,同时将其他服务部署在云端,加快本地开发循环,并允许使用熟悉的本地工具。通过拦截服务流量和管理集群连接,Telepresence实现了本地与远程环境的无缝集成,有效支持大规模应用的开发和测试。

TelepresenceKubernetes微服务开发本地开发容器化Github开源项目

Telepresence: fast, efficient local development for Kubernetes microservices

<img src="https://cncf-branding.netlify.app/img/projects/telepresence/horizontal/color/telepresence-horizontal-color.png" width="80"/>

Artifact Hub

Telepresence gives developers infinite scale development environments for Kubernetes.

Docs: OSS: https://www.getambassador.io/docs/telepresence-oss/ Licensed: https://www.getambassador.io/docs/telepresence Slack: Discuss in the OSS CNCF Slack in the #telepresence-oss channel Licensed: a8r.io/slack

With Telepresence:

  • You run one service locally, using your favorite IDE and other tools
  • You run the rest of your application in the cloud, where there is unlimited memory and compute

This gives developers:

  • A fast local dev loop, with no waiting for a container build / push / deploy
  • Ability to use their favorite local tools (IDE, debugger, etc.)
  • Ability to run large-scale applications that can't run locally

Quick Start

A few quick ways to start using Telepresence

  • Telepresence Quick Start: Quick Start
  • Install Telepresence: Install
  • Contributor's Guide: Guide
  • Meetings: Check out our community meeting schedule for opportunities to interact with Telepresence developers

Walkthrough

Install an interceptable service:

Start with an empty cluster:

$ kubectl create deploy hello --image=registry.k8s.io/echoserver:1.4 deployment.apps/hello created $ kubectl expose deploy hello --port 80 --target-port 8080 service/hello exposed $ kubectl get ns,svc,deploy,po NAME STATUS AGE namespace/kube-system Active 53m namespace/default Active 53m namespace/kube-public Active 53m namespace/kube-node-lease Active 53m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 53m service/hello ClusterIP 10.43.73.112 <none> 80/TCP 2m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/hello 1/1 1 1 2m NAME READY STATUS RESTARTS AGE pod/hello-9954f98bf-6p2k9 1/1 Running 0 2m15s

Check telepresence version

$ telepresence version OSS Client : v2.17.0 Root Daemon: not running User Daemon: not running

Setup Traffic Manager in the cluster

Install Traffic Manager in your cluster. By default, it will reside in the ambassador namespace:

$ telepresence helm install Traffic Manager installed successfully

Establish a connection to the cluster (outbound traffic)

Let telepresence connect:

$ telepresence connect Launching Telepresence Root Daemon Launching Telepresence User Daemon Connected to context default, namespace default (https://35.232.104.64)

A session is now active and outbound connections will be routed to the cluster. I.e. your laptop is logically "inside" a namespace in the cluster.

Since telepresence connected to the default namespace, all services in that namespace can now be reached directly by their name. You can of course also use namespaced names, e.g. curl hello.default.

$ curl hello CLIENT VALUES: client_address=10.244.0.87 command=GET real path=/ query=nil request_version=1.1 request_uri=http://hello:8080/ SERVER VALUES: server_version=nginx: 1.10.0 - lua: 10001 HEADERS RECEIVED: accept=*/* host=hello user-agent=curl/8.0.1 BODY: -no body in request-

Intercept the service. I.e. redirect traffic to it to our laptop (inbound traffic)

Add an intercept for the hello deployment on port 9000. Here, we also start a service listening on that port:

$ telepresence intercept hello --port 9000 -- python3 -m http.server 9000 Using Deployment hello intercepted Intercept name : hello State : ACTIVE Workload kind : Deployment Destination : 127.0.0.1:9000 Service Port Identifier: 80 Volume Mount Point : /tmp/telfs-524630891 Intercepting : all TCP connections Serving HTTP on 0.0.0.0 port 9000 (http://0.0.0.0:9000/) ...

The python -m httpserver is now started on port 9000 and will run until terminated by <ctrl>-C. Access it from a browser using http://hello/ or use curl from another terminal. With curl, it presents a html listing from the directory where the server was started. Something like:

$ curl hello <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Directory listing for /</title> </head> <body> <h1>Directory listing for /</h1> <hr> <ul> <li><a href="file1.txt">file1.txt</a></li> <li><a href="file2.txt">file2.txt</a></li> </ul> <hr> </body> </html>

Observe that the python service reports that it's being accessed:

127.0.0.1 - - [16/Jun/2022 11:39:20] "GET / HTTP/1.1" 200 -

Clean-up and close daemon processes

End the service with <ctrl>-C and then try curl hello or http://hello again. The intercept is gone, and the echo service responds as normal.

Now end the session too. Your desktop no longer has access to the cluster internals.

$ telepresence quit Disconnected $ curl hello curl: (6) Could not resolve host: hello

The telepresence daemons are still running in the background, which is harmless. You'll need to stop them before you upgrade telepresence. That's done by passing the option -s (stop all local telepresence daemons) to the quit command.

$ telepresence quit -s Telepresence Daemons quitting...done

What got installed in the cluster?

Telepresence installs the Traffic Manager in your cluster if it is not already present. This deployment remains unless you uninstall it.

Telepresence injects the Traffic Agent as an additional container into the pods of the workload you intercept, and will optionally install an init-container to route traffic through the agent (the init-container is only injected when the service is headless or uses a numerical targetPort). The modifications persist unless you uninstall them.

At first glance, we can see that the deployment is installed ...

$ kubectl get svc,deploy,pod service/kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 7d22h service/hello ClusterIP 10.43.145.57 <none> 80/TCP 13m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/hello 1/1 1 1 13m NAME READY STATUS RESTARTS AGE pod/hello-774455b6f5-6x6vs 2/2 Running 0 10m

... and that the traffic-manager is installed in the "ambassador" namespace.

$ kubectl -n ambassador get svc,deploy,pod NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/traffic-manager ClusterIP None <none> 8081/TCP 17m service/agent-injector ClusterIP 10.43.72.154 <none> 443/TCP 17m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/traffic-manager 1/1 1 1 17m NAME READY STATUS RESTARTS AGE pod/traffic-manager-dcd4cc64f-6v5bp 1/1 Running 0 17m

The traffic-agent is installed too, in the hello pod. Here together with an init-container, because the service is using a numerical targetPort.

$ kubectl describe pod hello-774455b6f5-6x6vs Name: hello-75b7c6d484-9r4xd Namespace: default Priority: 0 Service Account: default Node: kind-control-plane/192.168.96.2 Start Time: Sun, 07 Jan 2024 01:01:33 +0100 Labels: app=hello pod-template-hash=75b7c6d484 telepresence.io/workloadEnabled=true telepresence.io/workloadName=hello Annotations: telepresence.getambassador.io/inject-traffic-agent: enabled telepresence.getambassador.io/restartedAt: 2024-01-07T00:01:33Z Status: Running IP: 10.244.0.89 IPs: IP: 10.244.0.89 Controlled By: ReplicaSet/hello-75b7c6d484 Init Containers: tel-agent-init: Container ID: containerd://4acdf45992980e2796f0eb79fb41afb1a57808d108eb14a355cb390ccc764571 Image: docker.io/datawire/tel2:2.17.0 Image ID: docker.io/datawire/tel2@sha256:e18aed6e7bd3c15cb5a99161c164e0303d20156af68ef138faca98dc2c5754a7 Port: <none> Host Port: <none> Args: agent-init State: Terminated Reason: Completed Exit Code: 0 Started: Sun, 07 Jan 2024 01:01:34 +0100 Finished: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Environment: <none> Mounts: /etc/traffic-agent from traffic-config (rw) /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) Containers: echoserver: Container ID: containerd://577e140545f3106c90078e687e0db3661db815062084bb0c9f6b2d0b4f949308 Image: registry.k8s.io/echoserver:1.4 Image ID: sha256:523cad1a4df732d41406c9de49f932cd60d56ffd50619158a2977fd1066028f9 Port: <none> Host Port: <none> State: Running Started: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Environment: <none> Mounts: /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) traffic-agent: Container ID: containerd://17558b4711903f4cb580c5afafa169d314a7deaf33faa749f59d3a2f8eed80a9 Image: docker.io/datawire/tel2:2.17.0 Image ID: docker.io/datawire/tel2@sha256:e18aed6e7bd3c15cb5a99161c164e0303d20156af68ef138faca98dc2c5754a7 Port: 9900/TCP Host Port: 0/TCP Args: agent State: Running Started: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Readiness: exec [/bin/stat /tmp/agent/ready] delay=0s timeout=1s period=10s #success=1 #failure=3 Environment: _TEL_AGENT_POD_IP: (v1:status.podIP) _TEL_AGENT_NAME: hello-75b7c6d484-9r4xd (v1:metadata.name) A_TELEPRESENCE_MOUNTS: /var/run/secrets/kubernetes.io/serviceaccount Mounts: /etc/traffic-agent from traffic-config (rw) /tel_app_exports from export-volume (rw) /tel_app_mounts/echoserver/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) /tel_pod_info from traffic-annotations (rw) /tmp from tel-agent-tmp (rw) /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True Volumes: kube-api-access-svf4h: Type: Projected (a volume that contains injected data from multiple sources) TokenExpirationSeconds: 3607 ConfigMapName: kube-root-ca.crt ConfigMapOptional: <nil> DownwardAPI: true traffic-annotations: Type: DownwardAPI (a volume populated by information about the pod) Items: metadata.annotations -> annotations traffic-config: Type: ConfigMap (a volume populated by a ConfigMap) Name: telepresence-agents Optional: false export-volume: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: SizeLimit: <unset> tel-agent-tmp: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: SizeLimit: <unset> QoS Class: BestEffort Node-Selectors: <none> Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s node.kubernetes.io/unreachable:NoExecute op=Exists for 300s Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 7m40s default-scheduler Successfully assigned default/hello-75b7c6d484-9r4xd to kind-control-plane Normal Pulled 7m40s kubelet Container image "docker.io/datawire/tel2:2.17.0" already present on machine Normal Created 7m40s kubelet Created container tel-agent-init Normal Started 7m39s kubelet Started container tel-agent-init Normal Pulled 7m39s kubelet Container image "registry.k8s.io/echoserver:1.4" already present on machine Normal Created 7m39s kubelet Created container echoserver Normal Started 7m39s kubelet Started container echoserver Normal Pulled 7m39s kubelet Container image "docker.io/datawire/tel2:2.17.0" already present on machine Normal Created 7m39s kubelet Created container traffic-agent Normal Started 7m39s kubelet Started container traffic-agent

Telepresence keeps track of all possible intercepts for containers that have an agent installed in the configmap telepresence-agents.

$ kubectl describe configmap telepresence-agents Name: telepresence-agents Namespace: default Labels: app.kubernetes.io/created-by=traffic-manager app.kubernetes.io/name=telepresence-agents app.kubernetes.io/version=2.17.0 Annotations: <none> Data ==== hello: ---- agentImage: localhost:5000/tel2:2.17.0 agentName: hello containers: - Mounts: null envPrefix:

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多