telepresence

telepresence

Kubernetes微服务本地开发环境集成工具

Telepresence为Kubernetes微服务开发提供无限扩展的环境。该工具支持在本地运行单个服务,同时将其他服务部署在云端,加快本地开发循环,并允许使用熟悉的本地工具。通过拦截服务流量和管理集群连接,Telepresence实现了本地与远程环境的无缝集成,有效支持大规模应用的开发和测试。

TelepresenceKubernetes微服务开发本地开发容器化Github开源项目

Telepresence: fast, efficient local development for Kubernetes microservices

<img src="https://cncf-branding.netlify.app/img/projects/telepresence/horizontal/color/telepresence-horizontal-color.png" width="80"/>

Artifact Hub

Telepresence gives developers infinite scale development environments for Kubernetes.

Docs: OSS: https://www.getambassador.io/docs/telepresence-oss/ Licensed: https://www.getambassador.io/docs/telepresence Slack: Discuss in the OSS CNCF Slack in the #telepresence-oss channel Licensed: a8r.io/slack

With Telepresence:

  • You run one service locally, using your favorite IDE and other tools
  • You run the rest of your application in the cloud, where there is unlimited memory and compute

This gives developers:

  • A fast local dev loop, with no waiting for a container build / push / deploy
  • Ability to use their favorite local tools (IDE, debugger, etc.)
  • Ability to run large-scale applications that can't run locally

Quick Start

A few quick ways to start using Telepresence

  • Telepresence Quick Start: Quick Start
  • Install Telepresence: Install
  • Contributor's Guide: Guide
  • Meetings: Check out our community meeting schedule for opportunities to interact with Telepresence developers

Walkthrough

Install an interceptable service:

Start with an empty cluster:

$ kubectl create deploy hello --image=registry.k8s.io/echoserver:1.4 deployment.apps/hello created $ kubectl expose deploy hello --port 80 --target-port 8080 service/hello exposed $ kubectl get ns,svc,deploy,po NAME STATUS AGE namespace/kube-system Active 53m namespace/default Active 53m namespace/kube-public Active 53m namespace/kube-node-lease Active 53m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 53m service/hello ClusterIP 10.43.73.112 <none> 80/TCP 2m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/hello 1/1 1 1 2m NAME READY STATUS RESTARTS AGE pod/hello-9954f98bf-6p2k9 1/1 Running 0 2m15s

Check telepresence version

$ telepresence version OSS Client : v2.17.0 Root Daemon: not running User Daemon: not running

Setup Traffic Manager in the cluster

Install Traffic Manager in your cluster. By default, it will reside in the ambassador namespace:

$ telepresence helm install Traffic Manager installed successfully

Establish a connection to the cluster (outbound traffic)

Let telepresence connect:

$ telepresence connect Launching Telepresence Root Daemon Launching Telepresence User Daemon Connected to context default, namespace default (https://35.232.104.64)

A session is now active and outbound connections will be routed to the cluster. I.e. your laptop is logically "inside" a namespace in the cluster.

Since telepresence connected to the default namespace, all services in that namespace can now be reached directly by their name. You can of course also use namespaced names, e.g. curl hello.default.

$ curl hello CLIENT VALUES: client_address=10.244.0.87 command=GET real path=/ query=nil request_version=1.1 request_uri=http://hello:8080/ SERVER VALUES: server_version=nginx: 1.10.0 - lua: 10001 HEADERS RECEIVED: accept=*/* host=hello user-agent=curl/8.0.1 BODY: -no body in request-

Intercept the service. I.e. redirect traffic to it to our laptop (inbound traffic)

Add an intercept for the hello deployment on port 9000. Here, we also start a service listening on that port:

$ telepresence intercept hello --port 9000 -- python3 -m http.server 9000 Using Deployment hello intercepted Intercept name : hello State : ACTIVE Workload kind : Deployment Destination : 127.0.0.1:9000 Service Port Identifier: 80 Volume Mount Point : /tmp/telfs-524630891 Intercepting : all TCP connections Serving HTTP on 0.0.0.0 port 9000 (http://0.0.0.0:9000/) ...

The python -m httpserver is now started on port 9000 and will run until terminated by <ctrl>-C. Access it from a browser using http://hello/ or use curl from another terminal. With curl, it presents a html listing from the directory where the server was started. Something like:

$ curl hello <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Directory listing for /</title> </head> <body> <h1>Directory listing for /</h1> <hr> <ul> <li><a href="file1.txt">file1.txt</a></li> <li><a href="file2.txt">file2.txt</a></li> </ul> <hr> </body> </html>

Observe that the python service reports that it's being accessed:

127.0.0.1 - - [16/Jun/2022 11:39:20] "GET / HTTP/1.1" 200 -

Clean-up and close daemon processes

End the service with <ctrl>-C and then try curl hello or http://hello again. The intercept is gone, and the echo service responds as normal.

Now end the session too. Your desktop no longer has access to the cluster internals.

$ telepresence quit Disconnected $ curl hello curl: (6) Could not resolve host: hello

The telepresence daemons are still running in the background, which is harmless. You'll need to stop them before you upgrade telepresence. That's done by passing the option -s (stop all local telepresence daemons) to the quit command.

$ telepresence quit -s Telepresence Daemons quitting...done

What got installed in the cluster?

Telepresence installs the Traffic Manager in your cluster if it is not already present. This deployment remains unless you uninstall it.

Telepresence injects the Traffic Agent as an additional container into the pods of the workload you intercept, and will optionally install an init-container to route traffic through the agent (the init-container is only injected when the service is headless or uses a numerical targetPort). The modifications persist unless you uninstall them.

At first glance, we can see that the deployment is installed ...

$ kubectl get svc,deploy,pod service/kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 7d22h service/hello ClusterIP 10.43.145.57 <none> 80/TCP 13m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/hello 1/1 1 1 13m NAME READY STATUS RESTARTS AGE pod/hello-774455b6f5-6x6vs 2/2 Running 0 10m

... and that the traffic-manager is installed in the "ambassador" namespace.

$ kubectl -n ambassador get svc,deploy,pod NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/traffic-manager ClusterIP None <none> 8081/TCP 17m service/agent-injector ClusterIP 10.43.72.154 <none> 443/TCP 17m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/traffic-manager 1/1 1 1 17m NAME READY STATUS RESTARTS AGE pod/traffic-manager-dcd4cc64f-6v5bp 1/1 Running 0 17m

The traffic-agent is installed too, in the hello pod. Here together with an init-container, because the service is using a numerical targetPort.

$ kubectl describe pod hello-774455b6f5-6x6vs Name: hello-75b7c6d484-9r4xd Namespace: default Priority: 0 Service Account: default Node: kind-control-plane/192.168.96.2 Start Time: Sun, 07 Jan 2024 01:01:33 +0100 Labels: app=hello pod-template-hash=75b7c6d484 telepresence.io/workloadEnabled=true telepresence.io/workloadName=hello Annotations: telepresence.getambassador.io/inject-traffic-agent: enabled telepresence.getambassador.io/restartedAt: 2024-01-07T00:01:33Z Status: Running IP: 10.244.0.89 IPs: IP: 10.244.0.89 Controlled By: ReplicaSet/hello-75b7c6d484 Init Containers: tel-agent-init: Container ID: containerd://4acdf45992980e2796f0eb79fb41afb1a57808d108eb14a355cb390ccc764571 Image: docker.io/datawire/tel2:2.17.0 Image ID: docker.io/datawire/tel2@sha256:e18aed6e7bd3c15cb5a99161c164e0303d20156af68ef138faca98dc2c5754a7 Port: <none> Host Port: <none> Args: agent-init State: Terminated Reason: Completed Exit Code: 0 Started: Sun, 07 Jan 2024 01:01:34 +0100 Finished: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Environment: <none> Mounts: /etc/traffic-agent from traffic-config (rw) /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) Containers: echoserver: Container ID: containerd://577e140545f3106c90078e687e0db3661db815062084bb0c9f6b2d0b4f949308 Image: registry.k8s.io/echoserver:1.4 Image ID: sha256:523cad1a4df732d41406c9de49f932cd60d56ffd50619158a2977fd1066028f9 Port: <none> Host Port: <none> State: Running Started: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Environment: <none> Mounts: /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) traffic-agent: Container ID: containerd://17558b4711903f4cb580c5afafa169d314a7deaf33faa749f59d3a2f8eed80a9 Image: docker.io/datawire/tel2:2.17.0 Image ID: docker.io/datawire/tel2@sha256:e18aed6e7bd3c15cb5a99161c164e0303d20156af68ef138faca98dc2c5754a7 Port: 9900/TCP Host Port: 0/TCP Args: agent State: Running Started: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Readiness: exec [/bin/stat /tmp/agent/ready] delay=0s timeout=1s period=10s #success=1 #failure=3 Environment: _TEL_AGENT_POD_IP: (v1:status.podIP) _TEL_AGENT_NAME: hello-75b7c6d484-9r4xd (v1:metadata.name) A_TELEPRESENCE_MOUNTS: /var/run/secrets/kubernetes.io/serviceaccount Mounts: /etc/traffic-agent from traffic-config (rw) /tel_app_exports from export-volume (rw) /tel_app_mounts/echoserver/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) /tel_pod_info from traffic-annotations (rw) /tmp from tel-agent-tmp (rw) /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True Volumes: kube-api-access-svf4h: Type: Projected (a volume that contains injected data from multiple sources) TokenExpirationSeconds: 3607 ConfigMapName: kube-root-ca.crt ConfigMapOptional: <nil> DownwardAPI: true traffic-annotations: Type: DownwardAPI (a volume populated by information about the pod) Items: metadata.annotations -> annotations traffic-config: Type: ConfigMap (a volume populated by a ConfigMap) Name: telepresence-agents Optional: false export-volume: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: SizeLimit: <unset> tel-agent-tmp: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: SizeLimit: <unset> QoS Class: BestEffort Node-Selectors: <none> Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s node.kubernetes.io/unreachable:NoExecute op=Exists for 300s Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 7m40s default-scheduler Successfully assigned default/hello-75b7c6d484-9r4xd to kind-control-plane Normal Pulled 7m40s kubelet Container image "docker.io/datawire/tel2:2.17.0" already present on machine Normal Created 7m40s kubelet Created container tel-agent-init Normal Started 7m39s kubelet Started container tel-agent-init Normal Pulled 7m39s kubelet Container image "registry.k8s.io/echoserver:1.4" already present on machine Normal Created 7m39s kubelet Created container echoserver Normal Started 7m39s kubelet Started container echoserver Normal Pulled 7m39s kubelet Container image "docker.io/datawire/tel2:2.17.0" already present on machine Normal Created 7m39s kubelet Created container traffic-agent Normal Started 7m39s kubelet Started container traffic-agent

Telepresence keeps track of all possible intercepts for containers that have an agent installed in the configmap telepresence-agents.

$ kubectl describe configmap telepresence-agents Name: telepresence-agents Namespace: default Labels: app.kubernetes.io/created-by=traffic-manager app.kubernetes.io/name=telepresence-agents app.kubernetes.io/version=2.17.0 Annotations: <none> Data ==== hello: ---- agentImage: localhost:5000/tel2:2.17.0 agentName: hello containers: - Mounts: null envPrefix:

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多