telepresence

telepresence

Kubernetes微服务本地开发环境集成工具

Telepresence为Kubernetes微服务开发提供无限扩展的环境。该工具支持在本地运行单个服务,同时将其他服务部署在云端,加快本地开发循环,并允许使用熟悉的本地工具。通过拦截服务流量和管理集群连接,Telepresence实现了本地与远程环境的无缝集成,有效支持大规模应用的开发和测试。

TelepresenceKubernetes微服务开发本地开发容器化Github开源项目

Telepresence: fast, efficient local development for Kubernetes microservices

<img src="https://cncf-branding.netlify.app/img/projects/telepresence/horizontal/color/telepresence-horizontal-color.png" width="80"/>

Artifact Hub

Telepresence gives developers infinite scale development environments for Kubernetes.

Docs: OSS: https://www.getambassador.io/docs/telepresence-oss/ Licensed: https://www.getambassador.io/docs/telepresence Slack: Discuss in the OSS CNCF Slack in the #telepresence-oss channel Licensed: a8r.io/slack

With Telepresence:

  • You run one service locally, using your favorite IDE and other tools
  • You run the rest of your application in the cloud, where there is unlimited memory and compute

This gives developers:

  • A fast local dev loop, with no waiting for a container build / push / deploy
  • Ability to use their favorite local tools (IDE, debugger, etc.)
  • Ability to run large-scale applications that can't run locally

Quick Start

A few quick ways to start using Telepresence

  • Telepresence Quick Start: Quick Start
  • Install Telepresence: Install
  • Contributor's Guide: Guide
  • Meetings: Check out our community meeting schedule for opportunities to interact with Telepresence developers

Walkthrough

Install an interceptable service:

Start with an empty cluster:

$ kubectl create deploy hello --image=registry.k8s.io/echoserver:1.4 deployment.apps/hello created $ kubectl expose deploy hello --port 80 --target-port 8080 service/hello exposed $ kubectl get ns,svc,deploy,po NAME STATUS AGE namespace/kube-system Active 53m namespace/default Active 53m namespace/kube-public Active 53m namespace/kube-node-lease Active 53m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 53m service/hello ClusterIP 10.43.73.112 <none> 80/TCP 2m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/hello 1/1 1 1 2m NAME READY STATUS RESTARTS AGE pod/hello-9954f98bf-6p2k9 1/1 Running 0 2m15s

Check telepresence version

$ telepresence version OSS Client : v2.17.0 Root Daemon: not running User Daemon: not running

Setup Traffic Manager in the cluster

Install Traffic Manager in your cluster. By default, it will reside in the ambassador namespace:

$ telepresence helm install Traffic Manager installed successfully

Establish a connection to the cluster (outbound traffic)

Let telepresence connect:

$ telepresence connect Launching Telepresence Root Daemon Launching Telepresence User Daemon Connected to context default, namespace default (https://35.232.104.64)

A session is now active and outbound connections will be routed to the cluster. I.e. your laptop is logically "inside" a namespace in the cluster.

Since telepresence connected to the default namespace, all services in that namespace can now be reached directly by their name. You can of course also use namespaced names, e.g. curl hello.default.

$ curl hello CLIENT VALUES: client_address=10.244.0.87 command=GET real path=/ query=nil request_version=1.1 request_uri=http://hello:8080/ SERVER VALUES: server_version=nginx: 1.10.0 - lua: 10001 HEADERS RECEIVED: accept=*/* host=hello user-agent=curl/8.0.1 BODY: -no body in request-

Intercept the service. I.e. redirect traffic to it to our laptop (inbound traffic)

Add an intercept for the hello deployment on port 9000. Here, we also start a service listening on that port:

$ telepresence intercept hello --port 9000 -- python3 -m http.server 9000 Using Deployment hello intercepted Intercept name : hello State : ACTIVE Workload kind : Deployment Destination : 127.0.0.1:9000 Service Port Identifier: 80 Volume Mount Point : /tmp/telfs-524630891 Intercepting : all TCP connections Serving HTTP on 0.0.0.0 port 9000 (http://0.0.0.0:9000/) ...

The python -m httpserver is now started on port 9000 and will run until terminated by <ctrl>-C. Access it from a browser using http://hello/ or use curl from another terminal. With curl, it presents a html listing from the directory where the server was started. Something like:

$ curl hello <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Directory listing for /</title> </head> <body> <h1>Directory listing for /</h1> <hr> <ul> <li><a href="file1.txt">file1.txt</a></li> <li><a href="file2.txt">file2.txt</a></li> </ul> <hr> </body> </html>

Observe that the python service reports that it's being accessed:

127.0.0.1 - - [16/Jun/2022 11:39:20] "GET / HTTP/1.1" 200 -

Clean-up and close daemon processes

End the service with <ctrl>-C and then try curl hello or http://hello again. The intercept is gone, and the echo service responds as normal.

Now end the session too. Your desktop no longer has access to the cluster internals.

$ telepresence quit Disconnected $ curl hello curl: (6) Could not resolve host: hello

The telepresence daemons are still running in the background, which is harmless. You'll need to stop them before you upgrade telepresence. That's done by passing the option -s (stop all local telepresence daemons) to the quit command.

$ telepresence quit -s Telepresence Daemons quitting...done

What got installed in the cluster?

Telepresence installs the Traffic Manager in your cluster if it is not already present. This deployment remains unless you uninstall it.

Telepresence injects the Traffic Agent as an additional container into the pods of the workload you intercept, and will optionally install an init-container to route traffic through the agent (the init-container is only injected when the service is headless or uses a numerical targetPort). The modifications persist unless you uninstall them.

At first glance, we can see that the deployment is installed ...

$ kubectl get svc,deploy,pod service/kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 7d22h service/hello ClusterIP 10.43.145.57 <none> 80/TCP 13m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/hello 1/1 1 1 13m NAME READY STATUS RESTARTS AGE pod/hello-774455b6f5-6x6vs 2/2 Running 0 10m

... and that the traffic-manager is installed in the "ambassador" namespace.

$ kubectl -n ambassador get svc,deploy,pod NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/traffic-manager ClusterIP None <none> 8081/TCP 17m service/agent-injector ClusterIP 10.43.72.154 <none> 443/TCP 17m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/traffic-manager 1/1 1 1 17m NAME READY STATUS RESTARTS AGE pod/traffic-manager-dcd4cc64f-6v5bp 1/1 Running 0 17m

The traffic-agent is installed too, in the hello pod. Here together with an init-container, because the service is using a numerical targetPort.

$ kubectl describe pod hello-774455b6f5-6x6vs Name: hello-75b7c6d484-9r4xd Namespace: default Priority: 0 Service Account: default Node: kind-control-plane/192.168.96.2 Start Time: Sun, 07 Jan 2024 01:01:33 +0100 Labels: app=hello pod-template-hash=75b7c6d484 telepresence.io/workloadEnabled=true telepresence.io/workloadName=hello Annotations: telepresence.getambassador.io/inject-traffic-agent: enabled telepresence.getambassador.io/restartedAt: 2024-01-07T00:01:33Z Status: Running IP: 10.244.0.89 IPs: IP: 10.244.0.89 Controlled By: ReplicaSet/hello-75b7c6d484 Init Containers: tel-agent-init: Container ID: containerd://4acdf45992980e2796f0eb79fb41afb1a57808d108eb14a355cb390ccc764571 Image: docker.io/datawire/tel2:2.17.0 Image ID: docker.io/datawire/tel2@sha256:e18aed6e7bd3c15cb5a99161c164e0303d20156af68ef138faca98dc2c5754a7 Port: <none> Host Port: <none> Args: agent-init State: Terminated Reason: Completed Exit Code: 0 Started: Sun, 07 Jan 2024 01:01:34 +0100 Finished: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Environment: <none> Mounts: /etc/traffic-agent from traffic-config (rw) /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) Containers: echoserver: Container ID: containerd://577e140545f3106c90078e687e0db3661db815062084bb0c9f6b2d0b4f949308 Image: registry.k8s.io/echoserver:1.4 Image ID: sha256:523cad1a4df732d41406c9de49f932cd60d56ffd50619158a2977fd1066028f9 Port: <none> Host Port: <none> State: Running Started: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Environment: <none> Mounts: /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) traffic-agent: Container ID: containerd://17558b4711903f4cb580c5afafa169d314a7deaf33faa749f59d3a2f8eed80a9 Image: docker.io/datawire/tel2:2.17.0 Image ID: docker.io/datawire/tel2@sha256:e18aed6e7bd3c15cb5a99161c164e0303d20156af68ef138faca98dc2c5754a7 Port: 9900/TCP Host Port: 0/TCP Args: agent State: Running Started: Sun, 07 Jan 2024 01:01:34 +0100 Ready: True Restart Count: 0 Readiness: exec [/bin/stat /tmp/agent/ready] delay=0s timeout=1s period=10s #success=1 #failure=3 Environment: _TEL_AGENT_POD_IP: (v1:status.podIP) _TEL_AGENT_NAME: hello-75b7c6d484-9r4xd (v1:metadata.name) A_TELEPRESENCE_MOUNTS: /var/run/secrets/kubernetes.io/serviceaccount Mounts: /etc/traffic-agent from traffic-config (rw) /tel_app_exports from export-volume (rw) /tel_app_mounts/echoserver/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) /tel_pod_info from traffic-annotations (rw) /tmp from tel-agent-tmp (rw) /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-svf4h (ro) Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True Volumes: kube-api-access-svf4h: Type: Projected (a volume that contains injected data from multiple sources) TokenExpirationSeconds: 3607 ConfigMapName: kube-root-ca.crt ConfigMapOptional: <nil> DownwardAPI: true traffic-annotations: Type: DownwardAPI (a volume populated by information about the pod) Items: metadata.annotations -> annotations traffic-config: Type: ConfigMap (a volume populated by a ConfigMap) Name: telepresence-agents Optional: false export-volume: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: SizeLimit: <unset> tel-agent-tmp: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: SizeLimit: <unset> QoS Class: BestEffort Node-Selectors: <none> Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s node.kubernetes.io/unreachable:NoExecute op=Exists for 300s Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 7m40s default-scheduler Successfully assigned default/hello-75b7c6d484-9r4xd to kind-control-plane Normal Pulled 7m40s kubelet Container image "docker.io/datawire/tel2:2.17.0" already present on machine Normal Created 7m40s kubelet Created container tel-agent-init Normal Started 7m39s kubelet Started container tel-agent-init Normal Pulled 7m39s kubelet Container image "registry.k8s.io/echoserver:1.4" already present on machine Normal Created 7m39s kubelet Created container echoserver Normal Started 7m39s kubelet Started container echoserver Normal Pulled 7m39s kubelet Container image "docker.io/datawire/tel2:2.17.0" already present on machine Normal Created 7m39s kubelet Created container traffic-agent Normal Started 7m39s kubelet Started container traffic-agent

Telepresence keeps track of all possible intercepts for containers that have an agent installed in the configmap telepresence-agents.

$ kubectl describe configmap telepresence-agents Name: telepresence-agents Namespace: default Labels: app.kubernetes.io/created-by=traffic-manager app.kubernetes.io/name=telepresence-agents app.kubernetes.io/version=2.17.0 Annotations: <none> Data ==== hello: ---- agentImage: localhost:5000/tel2:2.17.0 agentName: hello containers: - Mounts: null envPrefix:

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多