使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
robust-sentiment-analysis项目是一个基于(distil)BERT的情感分类模型,由Tabularis.AI开发。该模型以distilbert/distilbert-base-uncased
为基础进行微调,专门用于文本分类中的情感分析任务。该项目支持识别五种情感类别,即:"非常负面"、"负面"、"中性"、"正面"和"非常正面"。
该模型的设计用途包括但不限于以下情境:
本模型的一个显著特点是使用合成数据进行训练。这些合成数据由现今最先进的大型语言模型生成,如Llama3.1和Gemma2。合成数据的使用使得模型在训练时不受限于真实世界数据集的不足,可以更全面地覆盖各种情感表达。
对于希望利用这项技术的用户,以下是快速上手的Python示例:
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # 加载模型和分词器 model_name = "tabularisai/robust-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # 情感预测函数 def predict_sentiment(text): inputs = tokenizer(text.lower(), return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=-1).item() sentiment_map = {0: "非常负面", 1: "负面", 2: "中性", 3: "正面", 4: "非常正面"} return sentiment_map[predicted_class] # 示例使用 texts = [ "I absolutely loved this movie! The acting was superb and the plot was engaging.", "The service at this restaurant was terrible. I'll never go back.", "The product works as expected. Nothing special, but it gets the job done.", "I'm somewhat disappointed with my purchase. It's not as good as I hoped.", "This book changed my life! I couldn't put it down and learned so much." ] for text in texts: sentiment = predict_sentiment(text) print(f"Text: {text}") print(f"Sentiment: {sentiment}\n")
该模型能够有效地预测多种情感类别,示例如下:
使用distilbert/distilbert-base-uncased
架构在合成数据上进行微调。训练采用了PyTorch Lightning框架,整个训练共进行5个epoch。在验证数据集上 ,模型的train_acc_off_by_one指标接近0.95。
虽然通过合成数据努力创造了一个平衡且公平的模型,但用户仍须注意模型可能存在的偏差。在特定应用场景中,建议用户对模型进行彻底测试,并持续监控其性能。
如果对该模型有任何疑问,或希望获得可靠的私有API,可通过电子邮件联系info@tabularis.ai。
AI数字人视频创作平台
Keevx 一款 开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目 ,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地