A curated list of resources for Learning with Noisy Labels
2008-NIPS - Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. [Paper] [Code]
2009-ICML - Supervised learning from multiple experts: whom to trust when everyone lies a bit. [Paper]
2011-NIPS - Bayesian Bias Mitigation for Crowdsourcing. [Paper]
2012-ICML - Learning to Label Aerial Images from Noisy Data. [Paper]
2013-NIPS - Learning with Multiple Labels. [Paper]
2014-ML - Learning from multiple annotators with varying expertise. [Paper]
2014 - A Comprehensive Introduction to Label Noise. [Paper]
2014 - Learning from Noisy Labels with Deep Neural Networks. [Paper]
2015-ICLR_W - Training Convolutional Networks with Noisy Labels. [Paper] [Code]
2015-CVPR - Learning from Massive Noisy Labeled Data for Image Classification. [Paper] [Code]
2015-CVPR - Visual recognition by learning from web data: A weakly supervised domain generalization approach. [Paper] [Code]
2015-CVPR - Training Deep Neural Networks on Noisy Labels with Bootstrapping. [Paper] [Loss-Code-Unofficial-1] [Loss-Code-Unofficial-2] [Code-Keras]
2015-ICCV - Webly supervised learning of convolutional networks. [Paper] [Project Pagee]
2015-TPAMI - Classification with noisy labels by importance reweighting. [Paper] [Code]
2015-NIPS - Learning with Symmetric Label Noise: The Importance of Being Unhinged. [Paper] [Loss-Code-Unofficial]
2015-Arxiv - Making Risk Minimization Tolerant to Label Noise. [Paper]
2015 - Learning Discriminative Reconstructions for Unsupervised Outlier Removal. [Paper] [Code]
2015-TNLS - Rboost: label noise-robust boosting algorithm based on a nonconvex loss function and the numerically stable base learners. [Paper]
2016-AAAI - Robust semi-supervised learning through label aggregation. [Paper]
2016-ICLR - Auxiliary Image Regularization for Deep CNNs with Noisy Labels. [Paper] [Code]
2016-CVPR - Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels. [Paper] [Code]
2016-ICML - Loss factorization, weakly supervised learning and label noise robustness. [Paper]
2016-RL - On the convergence of a family of robust losses for stochastic gradient descent. [Paper]
2016-NC - Noise detection in the Meta-Learning Level. [Paper] [Additional information]
2016-ECCV - The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition. [Paper] [Project Page]
2016-ICASSP - Training deep neural-networks based on unreliable labels. [Paper] [Poster] [Code-Unofficial]
2016-ICDM - Learning deep networks from noisy labels with dropout regularization. [Paper] [Code]
2016-KBS - A robust multi-class AdaBoost algorithm for mislabeled noisy data. [Paper]
2017-AAAI - Robust Loss Functions under Label Noise for Deep Neural Networks. [Paper]
2017-PAKDD - On the Robustness of Decision Tree Learning under Label Noise. [Paper]
2017-ICLR - Training deep neural-networks using a noise adaptation layer. [Paper] [Code]
2017-ICLR - Who Said What: Modeling Individual Labelers Improves Classification. [Paper] [Code]
2017-CVPR - Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach. [Paper] [Code]
2017-CVPR - Learning From Noisy Large-Scale Datasets With Minimal Supervision. [Paper]
2017-CVPR - Lean crowdsourcing: Combining humans and machines in an online system. [Paper] [Code]
2017-CVPR - Attend in groups: a weakly-supervised deep learning framework for learning from web data. [Paper] [Code]
2017-ICML - Robust Probabilistic Modeling with Bayesian Data Reweighting. [Paper] [Code]
2017-ICCV - Learning From Noisy Labels With Distillation. [Paper] [Code]
2017-NIPS - Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks. [Paper]
2017-NIPS - Active bias: Training more accurate neural networks by emphasizing high variance samples. [Paper] [Code]
2017-NIPS - Decoupling" when to update" from" how to update". [Paper] [Code]
2017-IEEE-TIFS - A Light CNN for Deep Face Representation with Noisy Labels. [Paper] [Code-Pytorch] [Code-Keras] [Code-Tensorflow]
2017-TNLS - Improving Crowdsourced Label Quality Using Noise Correction. [Paper]
2017-ML - Learning to Learn from Weak Supervision by Full Supervision. [Paper] [Code]
2017-ML - Avoiding your teacher's mistakes: Training neural networks with controlled weak supervision. [Paper]
2017-Arxiv - Deep Learning is Robust to Massive Label Noise. [Paper]
2017-Arxiv - Fidelity-weighted learning. [Paper]
2017 - Self-Error-Correcting Convolutional Neural Network for Learning with Noisy Labels. [Paper]
2017-Arxiv - Learning with confident examples: Rank pruning for robust classification with noisy labels. [Paper] [Code]
2017-Arxiv - Regularizing neural networks by penalizing confident output distributions. [Paper]
2017 - Learning with Auxiliary Less-Noisy Labels. [Paper]
2018-AAAI - Deep learning from crowds. [Paper]
2018-ICLR - mixup: Beyond Empirical Risk Minimization. [Paper] [Code]
2018-ICLR - Learning From Noisy Singly-labeled Data. [Paper] [Code]
2018-ICLR_W - How Do Neural Networks Overcome Label Noise?. [Paper]
2018-CVPR - CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise. [Paper] [Code]
2018-CVPR - Joint Optimization Framework for Learning with Noisy Labels. [Paper] [Code] [Code-Unofficial-Pytorch]
2018-CVPR - Iterative Learning with Open-set Noisy Labels. [Paper] [Code]
2018-ICML - MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. [Paper] [Code]
2018-ICML - Learning to Reweight Examples for Robust Deep Learning. [Paper] [Code] [Code-Unofficial-PyTorch]
2018-ICML - Dimensionality-Driven Learning with Noisy Labels. [Paper] [Code]
2018-ECCV - CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images. [Paper] [Code]
2018-ECCV - Learning with Biased Complementary Labels. [Paper] [Code]
2018-ISBI - Training a neural network based on unreliable human annotation of medical images. [Paper]
2018-WACV - Iterative Cross Learning on Noisy Labels. [Paper]
2018-WACV - A semi-supervised two-stage approach to learning from noisy labels.
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号