StratosphereLinuxIPS

StratosphereLinuxIPS

Slips是基于机器学习的开源网络入侵防御系统

Slips是一款强大的开源网络入侵防御系统,通过机器学习检测网络流量中的恶意行为。它支持实时分析网络流量、PCAP文件和来自Suricata等工具的网络流,结合了训练模型、威胁情报和专家规则来触发警报。Slips适用于Linux和MacOS,提供图形和命令行界面,是一个功能全面的网络安全工具。系统能够检测目标攻击和命令控制通道,并可与外部平台集成,实现自动威胁情报更新。

Slips入侵防御系统机器学习网络安全开源软件Github开源项目
<h1 align="center"> Slips v1.1 </h1>

License GitHub version Python GitHub language count GitHub repository size Docker Image Size (tag) Docker Pulls

GitHub issues GitHub issues-closed GitHub open-pull-requests GitHub pull-requests closed GitHub contributors GitHub forks GitHub Org's stars GitHub watchers

License Discord Twitter Follow

<hr>

Table of Contents

Slips: Behavioral Machine Learning-Based Intrusion Prevention System

Slips is a powerful endpoint behavioral intrusion prevention and detection system that uses machine learning to detect malicious behaviors in network traffic. Slips can work with network traffic in real-time, PCAP files, and network flows from popular tools like Suricata, Zeek/Bro, and Argus. Slips threat detection is based on a combination of machine learning models trained to detect malicious behaviors, 40+ threat intelligence feeds, and expert heuristics. Slips gathers evidence of malicious behavior and uses extensively trained thresholds to trigger alerts when enough evidence is accumulated.

<img src="https://raw.githubusercontent.com/stratosphereips/StratosphereLinuxIPS/develop/docs/images/slips.gif" width="850px" title="Slips in action.">

Introduction

Slips is the first free software behavioral machine learning-based IDS/IPS for endpoints. It was created in 2012 by Sebastian Garcia at the Stratosphere Laboratory, AIC, FEE, Czech Technical University in Prague. The goal was to offer a local IDS/IPS that leverages machine learning to detect network attacks using behavioral analysis.

Slips is supported on Linux and MacOS only. The blocking features of Slips are only supported on Linux

Slips is Python-based and relies on Zeek network analysis framework for capturing live traffic and analyzing PCAPs. and relies on Redis >= 7.0.4 for interprocess communication.

Usage

The recommended way to use Slips is on Docker.

Linux

docker run --rm -it -p 55000:55000  --cpu-shares "700" --memory="8g" --memory-swap="8g" --net=host --cap-add=NET_ADMIN --name slips stratosphereips/slips:latest
./slips.py -f dataset/test7-malicious.pcap -o output_dir
cat output_dir/alerts.log

Macos M1

In macos do not use --net=host if you want to access the internal container's ports from the host.

docker run --rm -it -p 55000:55000  --cpu-shares "700" --memory="8g" --memory-swap="8g" --cap-add=NET_ADMIN --name slips stratosphereips/slips_macos_m1:latest
./slips.py -f dataset/test7-malicious.pcap -o output_dir
cat output_dir/alerts.log

Macos Intel

docker run --rm -it -p 55000:55000  --cpu-shares "700" --memory="8g" --memory-swap="8g" --net=host --cap-add=NET_ADMIN --name slips stratosphereips/slips:latest
./slips.py -f dataset/test7-malicious.pcap -o output_dir
cat output_dir/alerts.log

For more installation options

For a detailed explanation of Slips parameters

Graphical User Interface

To check Slips output using a GUI you can use the web interface or our command-line based interface Kalipso

Web interface
./webinterface.sh

Then navigate to http://localhost:55000/ from your browser.

<img src="https://raw.githubusercontent.com/stratosphereips/StratosphereLinuxIPS/develop/docs/images/web_interface.png" width="850px">

For more info about the web interface, check the docs: https://stratospherelinuxips.readthedocs.io/en/develop/usage.html#the-web-interface

Kalispo (CLI-Interface)
./kalipso.sh
<img src="https://raw.githubusercontent.com/stratosphereips/StratosphereLinuxIPS/develop/docs/images/kalipso.png" width="850px">

For more info about the Kalipso interface, check the docs: https://stratospherelinuxips.readthedocs.io/en/develop/usage.html#kalipso


Requirements

Slips requires Python 3.10.12 and at least 4 GBs of RAM to run smoothly.

Installation

Slips can be run on different platforms, the easiest and most recommended way if you're a Linux user is to run Slips on Docker.


Extended Usage

Linux

Analyse your own traffic without P2P
Analyse your own traffic with P2P
Analyse a pcap without using P2P

Macos M1

Analyse your own traffic without using P2P

MacOS Intel processors

Analyse your own traffic without using P2P
Analyse your own traffic with using P2P
Analyse a PCAP without using P2P

Configuration

Slips has a config/slips.conf that contains user configurations for different modules and general execution.

  • You can change the timewindow width by modifying the time_window_width parameter

  • You can change the analysis direction to all if you want to see the attacks from and to your computer

  • You can also specify whether to train or test the ML models

  • You can enable popup notifications of evidence, enable blocking, plug in your own zeek script and more.

More details about the config file options here

Features

Slips key features are:

  • Behavioral Intrusion Prevention: Slips acts as a powerful system to prevent intrusions based on detecting malicious behaviors in network traffic using machine learning.
  • Modularity: Slips is written in Python and is highly modular with different modules performing specific detections in the network traffic.
  • Targeted Attacks and Command & Control Detection: It places a strong emphasis on identifying targeted attacks and command and control channels in network traffic.
  • Traffic Analysis Flexibility: Slips can analyze network traffic in real-time, PCAP files, and network flows from popular tools like Suricata, Zeek/Bro, and Argus.
  • Threat Intelligence Updates: Slips continuously updates threat intelligence files and databases, providing relevant detections as updates occur.
  • Integration with External Platforms: Modules in Slips can look up IP addresses on external platforms such as VirusTotal and RiskIQ.
  • Graphical User Interface: Slips provides a console graphical user interface (Kalipso) and a web interface for displaying detection with graphs and tables.
  • Peer-to-Peer (P2P) Module: Slips includes a complex automatic system to find other peers in the network and share IoC data automatically in a balanced, trusted manner. The P2P module can be enabled as needed.
  • Docker Implementation: Running Slips through Docker on Linux systems is simplified, allowing real-time traffic analysis.
  • Detailed Documentation: Slips provides detailed documentation guiding users through usage instructions for efficient utilization of its features.

Contributing

We welcome contributions to improve the functionality and features of Slips.

Please read carefully the contributing guidelines for contributing to the development of Slips

You can run Slips and report bugs, make feature requests, and suggest ideas, open a pull request with a solved GitHub issue and new feature, or open a pull request with a new detection module.

The instructions to create a new detection module along with a template here.

If you are a student, we encourage you to apply for the Google Summer of Code program that we participate in as a hosting organization.

Check Slips in GSoC2023 for more information.

You can join our conversations in Discord for questions and discussions. We appreciate your contributions and thank you for helping to improve Slips!

Documentation

User documentation

Code docs

Troubleshooting

If you can't listen to an interface without sudo, you can run the following command to let any user use Zeek to listen to an interface not just root.

sudo setcap cap_net_raw,cap_net_admin=eip /<path-to-zeek-bin/zeek

You can join our conversations in Discord for questions and discussions.

Or email us at

License

GNU General Public License

Credits

Founder: Sebastian Garcia, sebastian.garcia@agents.fel.cvut.cz, eldraco@gmail.com.

Main authors: Sebastian Garcia, Alya Gomaa, Kamila Babayeva

Contributors:

Changelog

https://github.com/stratosphereips/StratosphereLinuxIPS/blob/develop/CHANGELOG.md

Demos

The following videos contain demos of Slips in action in various events:

  • 2022 BlackHat Europe Arsenal, Slips: A Machine-Learning Based, Free-Software, Network Intrusion Prevention System [web]
  • 2022 BlackHat USA Arsenal, Slips: A Machine-Learning Based, Free-Software, Network Intrusion Prevention System

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多