starwhale

starwhale

一体化机器学习运维平台 加速AI模型开发流程

Starwhale是一个开源的MLOps/LLMOps平台,致力于优化机器学习运维流程。平台提供模型、运行时和数据集的统一管理,支持模型评估、在线演示和大语言模型微调等功能。Starwhale支持独立版、服务器版和云端版部署,适应不同应用场景。其开放架构允许开发者自定义MLOps功能,为AI团队打造高效、标准化的开发环境。

StarwhaleMLOpsLLMOps机器学习运营模型开发Github开源项目
<div align="center"> <img src="https://github.com/star-whale/docs/raw/main/static/img/starwhale.png" width="600" style="max-width: 600px;"> <h1 align="center" style="margin-top: 10px">An MLOps/LLMOps Platform</h1>

🚀 ️☁️ Starwhale Cloud is now open to the public, try it! 🎉🍻

</div> <p align="center"> <a href="https://pypi.org/project/starwhale/"> <img src="https://img.shields.io/pypi/v/starwhale?style=flat"> </a> <a href='https://artifacthub.io/packages/helm/starwhale/starwhale'> <img src='https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/starwhale' alt='Artifact Hub'/> </a> <a href="https://pypi.org/project/starwhale/"> <img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/starwhale"> </a> <a href="https://github.com/star-whale/starwhale/actions/workflows/client.yml"> <img src="https://github.com/star-whale/starwhale/actions/workflows/client.yml/badge.svg" alt="Client/SDK UT"> </a> <a href="https://github.com/star-whale/starwhale/actions/workflows/server-ut-report.yml"> <img src="https://github.com/star-whale/starwhale/actions/workflows/server-ut-report.yml/badge.svg" alt="Server UT"> </a> <a href="https://github.com/star-whale/starwhale/actions/workflows/console.yml"> <img src="https://github.com/star-whale/starwhale/actions/workflows/console.yml/badge.svg"> </a> <a href="https://github.com/star-whale/starwhale/actions/workflows/e2e-test.yml"> <img src='https://github.com/star-whale/starwhale/actions/workflows/e2e-test.yml/badge.svg' alt='Starwhale E2E Test'> </a> <a href='https://app.codecov.io/gh/star-whale/starwhale'> <img alt="Codecov" src="https://img.shields.io/codecov/c/github/star-whale/starwhale?flag=controller&label=Java%20Cov"> </a> <a href="https://app.codecov.io/gh/star-whale/starwhale"> <img alt="Codecov" src="https://img.shields.io/codecov/c/github/star-whale/starwhale?flag=standalone&label=Python%20cov"> </a> </p> <h4 align="center"> <p> <b>English</b> | <a href="https://github.com/star-whale/starwhale/blob/main/README_ZH.md">中文</a> <p> </h4>

What is Starwhale

Starwhale is an MLOps/LLMOps platform that brings efficiency and standardization to machine learning operations. It streamlines the model development liftcycle, enabling teams to optimize their workflows around key areas like model building, evaluation, release and fine-tuning.

products

Starwhale meets diverse deployment needs with three flexible configurations:

  • 🐥 Standalone - Deployed in a local development environment, managed by the swcli command-line tool, meeting development and debugging needs.
  • 🦅 Server - Deployed in a private data center, relying on a Kubernetes cluster, providing centralized, web-based, and secure services.
  • 🦉 Cloud - Hosted on a public cloud, with the access address https://cloud.starwhale.cn. The Starwhale team is responsible for maintenance, and no installation is required. You can start using it after registering an account.

As its core, Starwhale abstracts Model, Runtime and Dataset as first-class citizens - providing the fundamentals for streamlined operations. Starwhale further delivers tailored capabilities for common workflow scenarios including:

  • 🔥 Models Evaluation - Implement robust, production-scale evaluations with minimal coding through the Python SDK.
  • 🌟 Live Demo - Interactively assess model performance through user-friendly web interfaces.
  • 🌊 LLM Fine-tuning - End-to-end toolchain from efficient fine-tuning to comparative benchmarking and publishing.

Starwhale is also an open source platform, using the Apache-2.0 license. The Starwhale framework is designed for clarity and ease of use, empowering developers to build customized MLOps features tailored to their needs.

framework

Key Concepts

🐘 Starwhale Dataset

Starwhale Dataset offers efficient data storage, loading, and visualization capabilities, making it a dedicated data management tool tailored for the field of machine learning and deep learning

dataset overview

import torch from starwhale import dataset, Image # build dataset for starwhale cloud instance with dataset("https://cloud.starwhale.cn/project/starwhale:public/dataset/test-image", create="empty") as ds: for i in range(100): ds.append({"image": Image(f"{i}.png"), "label": i}) ds.commit() # load dataset ds = dataset("https://cloud.starwhale.cn/project/starwhale:public/dataset/test-image") print(len(ds)) print(ds[0].features.image.to_pil()) print(ds[0].features.label) torch_ds = ds.to_pytorch() torch_loader = torch.utils.data.DataLoader(torch_ds, batch_size=5) print(next(iter(torch_loader)))

🐇 Starwhale Model

Starwhale Model is a standard format for packaging machine learning models that can be used for various purposes, like model fine-tuning, model evaluation, and online serving. A Starwhale Model contains the model file, inference codes, configuration files, and any other files required to run the model.

overview

# model build swcli model build . --module mnist.evaluate --runtime pytorch/version/v1 --name mnist # model copy from standalone to cloud swcli model cp mnist https://cloud.starwhale.cn/project/starwhale:public # model run swcli model run --uri mnist --runtime pytorch --dataset mnist swcli model run --workdir . --module mnist.evaluator --handler mnist.evaluator:MNISTInference.cmp

🐌 Starwhale Runtime

Starwhale Runtime aims to provide a reproducible and sharable running environment for python programs. You can easily share your working environment with your teammates or outsiders, and vice versa. Furthermore, you can run your programs on Starwhale Server or Starwhale Cloud without bothering with the dependencies.

overview

# build from runtime.yaml, conda env, docker image or shell swcli runtime build --yaml runtime.yaml swcli runtime build --conda pytorch --name pytorch-runtime --cuda 11.4 swcli runtime build --docker pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime swcli runtime build --shell --name pytorch-runtime # runtime activate swcli runtime activate pytorch # integrated with model and dataset swcli model run --uri test --runtime pytorch swcli model build . --runtime pytorch swcli dataset build --runtime pytorch

🐄 Starwhale Evaluation

Starwhale Evaluation enables users to evaluate sophisticated, production-ready distributed models by writing just a few lines of code with Starwhale Python SDK.

import typing as t import gradio from starwhale import evaluation from starwhale.api.service import api def model_generate(image): ... return predict_value, probability_matrix @evaluation.predict( resources={"nvidia.com/gpu": 1}, replicas=4, ) def predict_image(data: dict, external: dict) -> None: return model_generate(data["image"]) @evaluation.evaluate(use_predict_auto_log=True, needs=[predict_image]) def evaluate_results(predict_result_iter: t.Iterator): for _data in predict_result_iter: ... evaluation.log_summary({"accuracy": 0.95, "benchmark": "test"}) @api(gradio.File(), gradio.Label()) def predict_view(file: t.Any) -> t.Any: with open(file.name, "rb") as f: data = Image(f.read(), shape=(28, 28, 1)) _, prob = predict_image({"image": data}) return {i: p for i, p in enumerate(prob)}

🦍 Starwhale Fine-tuning

Starwhale Fine-tuning provides a full workflow for Large Language Model(LLM) tuning, including batch model evaluation, live demo and model release capabilities. Starwhale Fine-tuning Python SDK is very simple.

import typing as t from starwhale import finetune, Dataset from transformers import Trainer @finetune( resources={"nvidia.com/gpu":4, "memory": "32G"}, require_train_datasets=True, require_validation_datasets=True, model_modules=["evaluation", "finetune"], ) def lora_finetune(train_datasets: t.List[Dataset], val_datasets: t.List[Dataset]) -> None: # init model and tokenizer trainer = Trainer( model=model, tokenizer=tokenizer, train_dataset=train_datasets[0].to_pytorch(), # convert Starwhale Dataset into Pytorch Dataset eval_dataset=val_datasets[0].to_pytorch()) trainer.train() trainer.save_state() trainer.save_model() # save weights, then Starwhale SDK will package them into Starwhale Model

Installation

🍉 Starwhale Standalone

Requirements: Python 3.7~3.11 in the Linux or macOS os.

python3 -m pip install starwhale

🥭 Starwhale Server

Starwhale Server is delivered as a Docker image, which can be run with Docker directly or deployed to a Kubernetes cluster. For the laptop environment, using swcli server start command is a appropriate choice that depends on Docker and Docker-Compose.

swcli server start

Quick Tour

We use MNIST as the hello world example to show the basic Starwhale Model workflow.

🪅 MNIST Evaluation in Starwhale Standalone

🪆 MNIST Evaluation in Starwhale Server

Examples

Documentation, Community, and Support

Contributing

🌼👏PRs are always welcomed 👍🍺. See Contribution to Starwhale for more details.

License

Starwhale is licensed under the [Apache License

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多