TATS

TATS

创新长视频生成框架 基于时间无关VQGAN和时间敏感Transformer

TATS项目是一个创新的长视频生成框架,通过结合时间无关的VQGAN和时间敏感的Transformer模型,实现了高效的长视频生成。该技术仅需使用数十帧视频进行训练,就能利用滑动窗口方法生成包含数千帧的连贯视频。TATS支持无条件生成以及基于文本、音频等条件的视频生成,为视频内容创作开辟了新的可能性。

TATS视频生成VQGANTransformer长视频生成Github开源项目

时间无关的VQGAN和时间敏感的Transformer实现长视频生成 (ECCV 2022)

项目网站 | 视频 | 论文

<p align="center"> <img src=assets/tats-ucf101.gif width="852" height="284" /> </p> <p align="center"> <img src=assets/tats_sky_long_high_res.gif width="852" height="210" /> </p>

简介 我们提出了TATS,一个长视频生成框架。它在仅包含数十帧的视频上训练,但能够通过滑动窗口生成数千帧的视频。

[最新消息] 我们分析了FVD与人类判断不一致的案例。查看我们的项目网页论文了解更多信息!

环境配置

  conda create -n tats python=3.8
  conda activate tats
  conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
  pip install pytorch-lightning==1.5.4
  pip install einops ftfy h5py imageio imageio-ffmpeg regex scikit-video tqdm

数据集和预训练模型

UCF-101: 官方数据, VQGAN, TATS-base, TATS-base-uncond <br> Sky-Timelapse: 官方数据, VQGAN, TATS-base <br> Taichi-HD: 官方数据, VQGAN, TATS-base <br> MUGEN: 官方数据, VQGAN, TATS-base <br> AudioSet-Drums: 官方数据, Video-VQGAN, STFT-VQGAN, TATS-base <br>

生成

  1. 短视频: 要生成与训练数据长度相同的视频,请使用scripts/下的代码,并设置以下参数:
  • gpt_ckpt: 训练好的transformer检查点路径。
  • vqgan_ckpt: 训练好的VQGAN检查点路径。
  • save: 保存生成结果的路径。
  • save_videos: 表示将保存视频。
  • class_cond: 表示使用类别标签作为条件信息。

要计算FVD,需要以下参数:

  • compute_fvd: 表示将计算FVD。
  • data_path: 数据集文件夹路径。
  • dataset: 数据集名称。
  • image_folder: 当数据集包含帧而不是视频时使用,例如Sky Time-lapse。
  • sample_every_n_frames: 在真实视频数据中跳过的帧数,例如使用Taichi-HD数据集时请设置为4。
  • resolution: 计算FVD时真实视频的分辨率,例如UCF、Sky和Taichi为128,MUGEN为256。
python sample_vqgan_transformer_short_videos.py \
    --gpt_ckpt {GPT-CKPT} --vqgan_ckpt {VQGAN-CKPT} --class_cond \
    --save {SAVEPATH} --data_path {DATAPATH} --batch_size 16 --resolution 128 \
    --top_k 2048 --top_p 0.8 --dataset {DATANAME} --compute_fvd --save_videos
  1. 长视频: 要使用滑动窗口生成长于训练长度的视频,请使用以下脚本。
  • sample_length: 要生成的潜在帧数。
  • temporal_sample_pos: 滑动窗口方法生成的帧位置。
python sample_vqgan_transformer_long_videos.py \
    --gpt_ckpt {GPT-CKPT} --vqgan_ckpt {VQGAN-CKPT} \
    --dataset ucf101 --class_cond --sample_length 16 --temporal_sample_pos 1 --batch_size 5 --n_sample 5 --save_videos
  1. 文本生成视频: 要根据文本条件生成MUGEN视频,请查看这个Colab笔记本示例!

  2. 音频生成视频: 要根据音频条件生成鼓声视频,请使用以下脚本。

  • stft_vqgan_ckpt: 用于STFT特征的训练好的VQGAN检查点路径。
python sample_vqgan_transformer_audio_cond.py \
    --gpt_ckpt {GPT-CKPT} --vqgan_ckpt {VQGAN-CKPT} --stft_vqgan_ckpt {STFT-CKPT} \
    --dataset drum --n_sample 10
  1. 分层采样: 要使用分层模型(先用AR transformer,再用插值transformer)生成长于训练长度的视频,请使用以下检查点和脚本。
python sample_vqgan_transformer_hierarchical.py \
    --ckpt1 {AR-CKPT} --CKPT2 {Interpolation-CKPT} --vqgan {VQGAN-CKPT} \
    --dataset sky --top_k_init 2048 --top_p_init 0.8 --top_k 2048 --top_p 0.8 --temporal_sample_pos 1

训练

以下是训练VQGAN和transformer的示例用法。根据不同设置可能需要更改的参数说明:

  • data_path: 数据集文件夹路径。
  • default_root_dir: 保存检查点和tensorboard日志的路径。
  • vqvae: 训练好的VQGAN检查点路径。
  • resolution: 训练视频片段的分辨率。
  • sequence_length: 训练视频片段的帧数。
  • discriminator_iter_start: 开始使用GAN损失的步骤ID。
  • image_folder: 当数据集包含帧而不是视频时使用,例如天空延时摄影。
  • unconditional: 当没有条件信息可用时使用此标志,例如天空延时摄影。
  • sample_every_n_frames: 在真实视频数据中跳过的帧数,例如在Taichi-HD数据集上训练时,请将其设置为4。
  • downsample: 时间、高度和宽度维度的采样率。
  • no_random_restart: 是否重新初始化码书标记。

VQGAN

python train_vqgan.py --embedding_dim 256 --n_codes 16384 --n_hiddens 32 --downsample 4 8 8 --no_random_restart \
                      --gpus 8 --sync_batchnorm --batch_size 2 --num_workers 32 --accumulate_grad_batches 6 \
                      --progress_bar_refresh_rate 500 --max_steps 2000000 --gradient_clip_val 1.0 --lr 3e-5 \
                      --data_path {DATAPATH} --default_root_dir {CKPTPATH} \
                      --resolution 128 --sequence_length 16 --discriminator_iter_start 10000 --norm_type batch \
                      --perceptual_weight 4 --image_gan_weight 1 --video_gan_weight 1  --gan_feat_weight 4

Transformer

TATS-base Transformer

python train_transformer.py --num_workers 32 --val_check_interval 0.5 --progress_bar_refresh_rate 500 \
                        --gpus 8 --sync_batchnorm --batch_size 3 --unconditional \
                        --vqvae {VQGAN-CKPT} --data_path {DATAPATH} --default_root_dir {CKPTPATH} \
                        --vocab_size 16384 --block_size 1024 --n_layer 24 --n_head 16 --n_embd 1024  \
                        --resolution 128 --sequence_length 16 --max_steps 2000000

要训练条件Transformer,请移除--unconditional标志并使用以下标志

  • cond_stage_key: 要使用的条件信息类型。可以是labeltextstft
  • stft_vqvae: 用于STFT特征的训练好的VQGAN检查点路径。
  • text_cond: 使用此标志表示BPE编码的文本。

TATS-hierarchical Transformer

python train_transformer.py --num_workers 32 --val_check_interval 0.5 --progress_bar_refresh_rate 500 \
                        --gpus 8 --sync_batchnorm --batch_size 3 --unconditional \
                        --vqvae {VQGAN-CKPT} --data_path {DATAPATH} --default_root_dir {CKPTPATH} \
                        --vocab_size 16384 --block_size 1280 --n_layer 24 --n_head 16 --n_embd 1024  \
                        --resolution 128 --sequence_length 20 --spatial_length 128 --n_unmasked 256 --max_steps 2000000

python train_transformer.py --num_workers 32 --val_check_interval 0.5 --progress_bar_refresh_rate 500 \
                        --gpus 8 --sync_batchnorm --batch_size 4 --unconditional \
                        --vqvae {VQGAN-CKPT} --data_path {DATAPATH} --default_root_dir {CKPTPATH} \
                        --vocab_size 16384 --block_size 1024 --n_layer 24 --n_head 16 --n_embd 1024  \
                        --resolution 128 --sequence_length 64 --sample_every_n_latent_frames 4 --spatial_length 128 --max_steps 2000000

致谢

我们的代码部分基于VQGANVideoGPT

引用

@article{ge2022long,
  title={Long video generation with time-agnostic vqgan and time-sensitive transformer},
  author={Ge, Songwei and Hayes, Thomas and Yang, Harry and Yin, Xi and Pang, Guan and Jacobs, David and Huang, Jia-Bin and Parikh, Devi},
  journal={arXiv preprint arXiv:2204.03638},
  year={2022}
}

许可证

TATS采用MIT许可证,详见LICENSE文件。

编辑推荐精选

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

下拉加载更多