six (1.16.0)
numpy (1.26.4)
scipy (1.13.0)
scikit-learn (0.23.0)
cvxopt (1.3.2)
pandas (2.2.2)
ranking (0.3.2)
statsmodels (0.14.2)
matplotlib (3.8.4)
tensorflow (1.15.4)
requirements.txt lists all these libraries. To install:
pip install -r requirements.txt
pip:Execute the following to install the library from git.
pip install git+https://github.com/shubhomoydas/ad_examples.git
To check the installed library version:
pip list | grep ad-examples
IMPORTANT: In order for the logs and plots to be generated by the illustrative examples below, make sure that the current working directory has a temp folder.
To run demo_aad:
python -m ad_examples.aad.demo_aad
Check output:
baseline found:
[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8]
AAD found:
[0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 12, 13, 14, 14, 14, 15]
To uninstall:
pip uninstall ad-examples
See test_aad.ipynb for sample notebook usage. This notebook code should run without the pip install step since the package ad_examples is directly under the notebook's work folder.
The code has been tested with python 3.6+.
Although the package has a dependency on tensorflow, it is not required for AAD and hence tensorflow will not be installed automatically.
This repository includes, among other examples, my own original research in active learning and data drift detection:
This is a collection of anomaly detection examples for detection methods popular in academic literature and in practice. I will include more examples as and when I find time.
Some techniques covered are listed below. These are a mere drop in the ocean of all anomaly detectors and are only meant to highlight some broad categories. Apologies if your favorite one is currently not included -- hopefully in time...
There are other important data types/scenarios such as static and dynamic graphs ((Akoglu, Tong, Koutra 2015), (Bhatia, S. et al. 2020)) where anomaly detection is highly relevant for real-world applications, but which are not covered in this repository. Interested readers may instead refer to the references provided.
There are multiple datasets (synthetic/real) supported. Change the code to work with whichever dataset or algorithm is desired. Most of the demos will output pdf plots under the 'temp' folder when executed.
AUC is the most common metric used to report anomaly detection performance. See here for a complete example with standard datasets.
To execute the code:
Run code from the checkout folder. The outputs will be generated under 'temp' folder.
To avoid import errors, make sure that PYTHONPATH is configured correctly to include the ad_examples source dir: .:/usr/local/lib/python
The run commands are at the top of the python source code files.
Check the log file in temp folder. Usually it will be named <demo_code>.log. Timeseries demos will output logs under the timeseries folder.
This codebase replaces the older 'pyaad' project (https://github.com/shubhomoydas/pyaad). It implements an algorithm (AAD) to actively explore anomalies.
Motivation and intuition
Our motivation for exploring active anomaly detection with ensembles is presented in Motivations.md.
Approach
The approach is explained in more detail in (Das, S., Islam, R., et al. 2019).
Demonstration of the basic idea
Assuming that the ensemble scores have already been computed, the demo code percept.py implements AAD in a much more simplified manner.
To run percept.py:
python -m ad_examples.percept.percept
The above command will generate a pdf file with plots illustrating how the data was actively labeled.

Reference(s):
Das, S., Islam, R., Jayakodi, N.K. and Doppa, J.R. (2024). Effectiveness of Tree-based Ensembles for Anomaly Discovery: Insights, Batch and Streaming Active Learning, Journal of Artificial Intelligence Research 80 (2024) 127-172. (pdf) (This is the most comprehensive version.)
Das, S., Wong, W-K., Dietterich, T., Fern, A. and Emmott, A. (2020). Discovering Anomalies by Incorporating Feedback from an Expert, ACM Transactions on Knowledge Discovery from Data (TKDD) 14, 4, Article 49 (July 2020), 32 pages. DOI:https://doi.org/10.1145/3396608.
Islam, R., Das, S., Doppa, J.R., Natarajan, S. (2020). GLAD: GLocalized Anomaly Detection via Human-in-the-Loop Learning. Workshop on Human in the Loop Learning at 37th International Conference on Machine Learning (ICML) (pdf)
Das, S., Islam, R., Jayakodi, N.K. and Doppa, J.R. (2018). Active Anomaly Detection via Ensembles. (pdf)
Das, S., Wong, W-K., Fern, A., Dietterich, T. and Siddiqui, A. (2017). Incorporating Feedback into Tree-based Anomaly Detection, KDD Interactive Data Exploration and Analytics (IDEA) Workshop. (pdf)(presentation)
Das, S., Wong, W-K., Dietterich, T., Fern, A. and Emmott, A. (2016). Incorporating Expert Feedback into Active Anomaly Discovery in the Proceedings of the IEEE International Conference on Data Mining. (pdf)(presentation)
Das, S. (2017). Incorporating User Feedback into Machine Learning Systems, PhD Thesis (pdf) -- The work on AAD in this repository was developed during my PhD and Post-doctoral research.
Akoglu, L., Tong, H. and Koutra, D. (2015). Graph based anomaly detection and description: a survey, Data Mining and Knowledge Discovery. (pdf)
Bhatia, S., Hooi, B., Yoon, M., Shin, K., Faloutsos, C. (2020). MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams. (pdf) (code)
In case you find this repository useful or use in your own work, please cite it with the following BibTeX references:
@article{das:2020,
author = {Das, Shubhomoy and Wong, Weng-Keen and Dietterich, Thomas and Fern, Alan and Emmott, Andrew},
title = {Discovering Anomalies by Incorporating Feedback from an Expert},
year = {2020},
issue_date = {July 2020},
publisher = {Association for Computing Machinery},
volume = {14},
number = {4},
issn = {1556-4681},
url = {https://doi.org/10.1145/3396608},
doi = {10.1145/3396608},
journal = {ACM Trans. Knowl. Discov. Data},
month = jun,
articleno = {49},
numpages = {32}
}
@article{das:2024,
author = {Shubhomoy Das and Md Rakibul Islam and Nitthilan Kannappan Jayakodi and Janardhan Rao Doppa},
title = {Effectiveness of Tree-based Ensembles for Anomaly Discovery: Insights, Batch and Streaming Active Learning},
year = {2024},
issue_date = {May 2024},
volume = {80},
journal = {J. Artif. Int. Res.},
month = {may},
numpages = {46},
pages = {127--172}
}
@misc{github:shubhomoydas:ad_examples,
author = {Shubhomoy Das},
title = {Active Anomaly Discovery},
year = {2018},
journal = {arXiv:1708.09441},
howpublished = {\url{https://github.com/shubhomoydas/ad_examples}},
note = {[Online; accessed 19-Sep-2018]}
}
Other publications may be cited as:
@article{islam:2020b,
author = {Md Rakibul Islam and Shubhomoy Das and Janardhan Rao Doppa and Sriraam Natarajan},
title = {GLAD: GLocalized Anomaly Detection via Human-in-the-Loop Learning},
year = {2020},
booktitle={ICML Workshop on Human in the Loop Learning},
howpublished = {\url{https://arxiv.org/abs/1810.01403}},
note = {[Online; accessed 15-Jul-2020]}
}
@article{das:2018a,
author = {Shubhomoy Das and Md Rakibul Islam and Nitthilan Kannappan Jayakodi and Janardhan Rao Doppa},
title = {Active Anomaly Detection via Ensembles},
year = {2018},
journal = {arXiv:1809.06477},
howpublished = {\url{https://arxiv.org/abs/1809.06477}},
note = {[Online; accessed 19-Sep-2018]}
}
@inproceedings{das:2016,
author={Shubhomoy Das and Weng-Keen Wong and Thomas G. Dietterich and Alan Fern and Andrew Emmott},
title={Incorporating Expert Feedback into Active Anomaly Discovery},
booktitle={IEEE ICDM},
year={2016}
}
@inproceedings{das:2017,
author={Shubhomoy Das and Weng-Keen Wong and Alan Fern and Thomas G. Dietterich and Md Amran Siddiqui},
title={Incorporating Expert Feedback into Tree-based Anomaly Detection},
booktitle={KDD IDEA Workshop},
year={2017}
}
This codebase is my research platform. The main bash script aad.sh makes it easier to run all AAD experiments multiple times (in the spirit of scientific inquiry) so that final results can be averaged. I try


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无 缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号