polish-nlp-resources

polish-nlp-resources

波兰语自然语言处理资源与预训练模型库

该项目汇集了多种波兰语自然语言处理资源,包括词嵌入、语言模型和机器翻译模型。提供Word2Vec、FastText、GloVe等词向量,以及ELMo、RoBERTa等上下文嵌入模型。还包含压缩词向量和Wikipedia2Vec等特色资源。涵盖从基础词向量到预训练模型的多个层面,为波兰语NLP研究和应用提供支持。

NLPPolish预训练模型词嵌入语言模型Github开源项目

Polish NLP resources

This repository contains pre-trained models and language resources for Natural Language Processing in Polish created during my research. Some of the models are also available on Huggingface Hub.

If you'd like to use any of those resources in your research please cite:

@Misc{polish-nlp-resources, author = {S{\l}awomir Dadas}, title = {A repository of Polish {NLP} resources}, howpublished = {Github}, year = {2019}, url = {https://github.com/sdadas/polish-nlp-resources/} }

Contents

Word embeddings

The following section includes pre-trained word embeddings for Polish. Each model was trained on a corpus consisting of Polish Wikipedia dump, Polish books and articles, 1.5 billion tokens at total.

Word2Vec

Word2Vec trained with Gensim. 100 dimensions, negative sampling, contains lemmatized words with 3 or more ocurrences in the corpus and additionally a set of pre-defined punctuation symbols, all numbers from 0 to 10'000, Polish forenames and lastnames. The archive contains embedding in gensim binary format. Example of usage:

from gensim.models import KeyedVectors if __name__ == '__main__': word2vec = KeyedVectors.load("word2vec_100_3_polish.bin") print(word2vec.similar_by_word("bierut")) # [('cyrankiewicz', 0.818274736404419), ('gomułka', 0.7967918515205383), ('raczkiewicz', 0.7757788896560669), ('jaruzelski', 0.7737460732460022), ('pużak', 0.7667238712310791)]

Download (GitHub)

FastText

FastText trained with Gensim. Vocabulary and dimensionality is identical to Word2Vec model. The archive contains embedding in gensim binary format. Example of usage:

from gensim.models import KeyedVectors if __name__ == '__main__': word2vec = KeyedVectors.load("fasttext_100_3_polish.bin") print(word2vec.similar_by_word("bierut")) # [('bieruty', 0.9290274381637573), ('gierut', 0.8921363353729248), ('bieruta', 0.8906412124633789), ('bierutow', 0.8795544505119324), ('bierutowsko', 0.839280366897583)]

Download (OneDrive)

GloVe

Global Vectors for Word Representation (GloVe) trained using the reference implementation from Stanford NLP. 100 dimensions, contains lemmatized words with 3 or more ocurrences in the corpus. Example of usage:

from gensim.models import KeyedVectors if __name__ == '__main__': word2vec = KeyedVectors.load_word2vec_format("glove_100_3_polish.txt") print(word2vec.similar_by_word("bierut")) # [('cyrankiewicz', 0.8335597515106201), ('gomułka', 0.7793121337890625), ('bieruta', 0.7118682861328125), ('jaruzelski', 0.6743760108947754), ('minc', 0.6692837476730347)]

Download (GitHub)

High dimensional word vectors

Pre-trained vectors using the same vocabulary as above but with higher dimensionality. These vectors are more suitable for representing larger chunks of text such as sentences or documents using simple word aggregation methods (averaging, max pooling etc.) as more semantic information is preserved this way.

GloVe - 300d: Part 1 (GitHub), 500d: Part 1 (GitHub) Part 2 (GitHub), 800d: Part 1 (GitHub) Part 2 (GitHub) Part 3 (GitHub)

Word2Vec - 300d (OneDrive), 500d (OneDrive), 800d (OneDrive)

FastText - 300d (OneDrive), 500d (OneDrive), 800d (OneDrive)

Compressed Word2Vec

This is a compressed version of the Word2Vec embedding model described above. For compression, we used the method described in Compressing Word Embeddings via Deep Compositional Code Learning by Shu and Nakayama. Compressed embeddings are suited for deployment on storage-poor devices such as mobile phones. The model weights 38MB, only 4.4% size of the original Word2Vec embeddings. Although the authors of the article claimed that compressing with their method doesn't hurt model performance, we noticed a slight but acceptable drop of accuracy when using compressed version of embeddings. Sample decoder class with usage:

import gzip from typing import Dict, Callable import numpy as np class CompressedEmbedding(object): def __init__(self, vocab_path: str, embedding_path: str, to_lowercase: bool=True): self.vocab_path: str = vocab_path self.embedding_path: str = embedding_path self.to_lower: bool = to_lowercase self.vocab: Dict[str, int] = self.__load_vocab(vocab_path) embedding = np.load(embedding_path) self.codes: np.ndarray = embedding[embedding.files[0]] self.codebook: np.ndarray = embedding[embedding.files[1]] self.m = self.codes.shape[1] self.k = int(self.codebook.shape[0] / self.m) self.dim: int = self.codebook.shape[1] def __load_vocab(self, vocab_path: str) -> Dict[str, int]: open_func: Callable = gzip.open if vocab_path.endswith(".gz") else open with open_func(vocab_path, "rt", encoding="utf-8") as input_file: return {line.strip():idx for idx, line in enumerate(input_file)} def vocab_vector(self, word: str): if word == "<pad>": return np.zeros(self.dim) val: str = word.lower() if self.to_lower else word index: int = self.vocab.get(val, self.vocab["<unk>"]) codes = self.codes[index] code_indices = np.array([idx * self.k + offset for idx, offset in enumerate(np.nditer(codes))]) return np.sum(self.codebook[code_indices], axis=0) if __name__ == '__main__': word2vec = CompressedEmbedding("word2vec_100_3.vocab.gz", "word2vec_100_3.compressed.npz") print(word2vec.vocab_vector("bierut"))

Download (GitHub)

Wikipedia2Vec

Wikipedia2Vec is a toolkit for learning joint representations of words and Wikipedia entities. We share Polish embeddings learned using a modified version of the library in which we added lemmatization and fixed some issues regarding parsing wiki dumps for languages other than English. Embedding models are available in sizes from 100 to 800 dimensions. A simple example:

from wikipedia2vec import Wikipedia2Vec wiki2vec = Wikipedia2Vec.load("wiki2vec-plwiki-100.bin") print(wiki2vec.most_similar(wiki2vec.get_entity("Bolesław Bierut"))) # (<Entity Bolesław Bierut>, 1.0), (<Word bierut>, 0.75790733), (<Word gomułka>, 0.7276504), # (<Entity Krajowa Rada Narodowa>, 0.7081445), (<Entity Władysław Gomułka>, 0.7043667) [...]

Download embeddings: 100d, 300d, 500d, 800d.

Language models

ELMo

Embeddings from Language Models (ELMo) is a contextual embedding presented in Deep contextualized word representations by Peters et al. Sample usage with PyTorch below, for a more detailed instructions for integrating ELMo with your model please refer to the official repositories github.com/allenai/bilm-tf (Tensorflow) and github.com/allenai/allennlp (PyTorch).

from allennlp.commands.elmo import ElmoEmbedder elmo = ElmoEmbedder("options.json", "weights.hdf5") print(elmo.embed_sentence(["Zażółcić", "gęślą", "jaźń"]))

Download (GitHub)

RoBERTa

Language model for Polish based on popular transformer architecture. We provide weights for improved BERT language model introduced in RoBERTa: A Robustly Optimized BERT Pretraining Approach. We provide two RoBERTa models for Polish - base and large model. A summary of pre-training parameters for each model is shown in the table below. We release two version of the each model: one in the Fairseq format and the other in the HuggingFace Transformers format. More information about the models can be found in a separate repository.

<table> <thead> <th>Model</th> <th>L / H / A*</th> <th>Batch size</th> <th>Update steps</th> <th>Corpus size</th> <th>Fairseq</th> <th>Transformers</th> </thead> <tr> <td>RoBERTa&nbsp;(base)</td> <td>12&nbsp;/&nbsp;768&nbsp;/&nbsp;12</td> <td>8k</td> <td>125k</td> <td>~20GB</td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models/roberta_base_fairseq.zip">v0.9.0</a> </td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models-transformers-v3.4.0/roberta_base_transformers.zip">v3.4</a> </td> </tr> <tr> <td>RoBERTa&#8209;v2&nbsp;(base)</td> <td>12&nbsp;/&nbsp;768&nbsp;/&nbsp;12</td> <td>8k</td> <td>400k</td> <td>~20GB</td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models-v2/roberta_base_fairseq.zip">v0.10.1</a> </td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models-v2/roberta_base_transformers.zip">v4.4</a> </td> </tr> <tr> <td>RoBERTa&nbsp;(large)</td> <td>24&nbsp;/&nbsp;1024&nbsp;/&nbsp;16</td> <td>30k</td> <td>50k</td> <td>~135GB</td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models/roberta_large_fairseq.zip">v0.9.0</a> </td> <td> <a

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多