polish-nlp-resources

polish-nlp-resources

波兰语自然语言处理资源与预训练模型库

该项目汇集了多种波兰语自然语言处理资源,包括词嵌入、语言模型和机器翻译模型。提供Word2Vec、FastText、GloVe等词向量,以及ELMo、RoBERTa等上下文嵌入模型。还包含压缩词向量和Wikipedia2Vec等特色资源。涵盖从基础词向量到预训练模型的多个层面,为波兰语NLP研究和应用提供支持。

NLPPolish预训练模型词嵌入语言模型Github开源项目

Polish NLP resources

This repository contains pre-trained models and language resources for Natural Language Processing in Polish created during my research. Some of the models are also available on Huggingface Hub.

If you'd like to use any of those resources in your research please cite:

@Misc{polish-nlp-resources, author = {S{\l}awomir Dadas}, title = {A repository of Polish {NLP} resources}, howpublished = {Github}, year = {2019}, url = {https://github.com/sdadas/polish-nlp-resources/} }

Contents

Word embeddings

The following section includes pre-trained word embeddings for Polish. Each model was trained on a corpus consisting of Polish Wikipedia dump, Polish books and articles, 1.5 billion tokens at total.

Word2Vec

Word2Vec trained with Gensim. 100 dimensions, negative sampling, contains lemmatized words with 3 or more ocurrences in the corpus and additionally a set of pre-defined punctuation symbols, all numbers from 0 to 10'000, Polish forenames and lastnames. The archive contains embedding in gensim binary format. Example of usage:

from gensim.models import KeyedVectors if __name__ == '__main__': word2vec = KeyedVectors.load("word2vec_100_3_polish.bin") print(word2vec.similar_by_word("bierut")) # [('cyrankiewicz', 0.818274736404419), ('gomułka', 0.7967918515205383), ('raczkiewicz', 0.7757788896560669), ('jaruzelski', 0.7737460732460022), ('pużak', 0.7667238712310791)]

Download (GitHub)

FastText

FastText trained with Gensim. Vocabulary and dimensionality is identical to Word2Vec model. The archive contains embedding in gensim binary format. Example of usage:

from gensim.models import KeyedVectors if __name__ == '__main__': word2vec = KeyedVectors.load("fasttext_100_3_polish.bin") print(word2vec.similar_by_word("bierut")) # [('bieruty', 0.9290274381637573), ('gierut', 0.8921363353729248), ('bieruta', 0.8906412124633789), ('bierutow', 0.8795544505119324), ('bierutowsko', 0.839280366897583)]

Download (OneDrive)

GloVe

Global Vectors for Word Representation (GloVe) trained using the reference implementation from Stanford NLP. 100 dimensions, contains lemmatized words with 3 or more ocurrences in the corpus. Example of usage:

from gensim.models import KeyedVectors if __name__ == '__main__': word2vec = KeyedVectors.load_word2vec_format("glove_100_3_polish.txt") print(word2vec.similar_by_word("bierut")) # [('cyrankiewicz', 0.8335597515106201), ('gomułka', 0.7793121337890625), ('bieruta', 0.7118682861328125), ('jaruzelski', 0.6743760108947754), ('minc', 0.6692837476730347)]

Download (GitHub)

High dimensional word vectors

Pre-trained vectors using the same vocabulary as above but with higher dimensionality. These vectors are more suitable for representing larger chunks of text such as sentences or documents using simple word aggregation methods (averaging, max pooling etc.) as more semantic information is preserved this way.

GloVe - 300d: Part 1 (GitHub), 500d: Part 1 (GitHub) Part 2 (GitHub), 800d: Part 1 (GitHub) Part 2 (GitHub) Part 3 (GitHub)

Word2Vec - 300d (OneDrive), 500d (OneDrive), 800d (OneDrive)

FastText - 300d (OneDrive), 500d (OneDrive), 800d (OneDrive)

Compressed Word2Vec

This is a compressed version of the Word2Vec embedding model described above. For compression, we used the method described in Compressing Word Embeddings via Deep Compositional Code Learning by Shu and Nakayama. Compressed embeddings are suited for deployment on storage-poor devices such as mobile phones. The model weights 38MB, only 4.4% size of the original Word2Vec embeddings. Although the authors of the article claimed that compressing with their method doesn't hurt model performance, we noticed a slight but acceptable drop of accuracy when using compressed version of embeddings. Sample decoder class with usage:

import gzip from typing import Dict, Callable import numpy as np class CompressedEmbedding(object): def __init__(self, vocab_path: str, embedding_path: str, to_lowercase: bool=True): self.vocab_path: str = vocab_path self.embedding_path: str = embedding_path self.to_lower: bool = to_lowercase self.vocab: Dict[str, int] = self.__load_vocab(vocab_path) embedding = np.load(embedding_path) self.codes: np.ndarray = embedding[embedding.files[0]] self.codebook: np.ndarray = embedding[embedding.files[1]] self.m = self.codes.shape[1] self.k = int(self.codebook.shape[0] / self.m) self.dim: int = self.codebook.shape[1] def __load_vocab(self, vocab_path: str) -> Dict[str, int]: open_func: Callable = gzip.open if vocab_path.endswith(".gz") else open with open_func(vocab_path, "rt", encoding="utf-8") as input_file: return {line.strip():idx for idx, line in enumerate(input_file)} def vocab_vector(self, word: str): if word == "<pad>": return np.zeros(self.dim) val: str = word.lower() if self.to_lower else word index: int = self.vocab.get(val, self.vocab["<unk>"]) codes = self.codes[index] code_indices = np.array([idx * self.k + offset for idx, offset in enumerate(np.nditer(codes))]) return np.sum(self.codebook[code_indices], axis=0) if __name__ == '__main__': word2vec = CompressedEmbedding("word2vec_100_3.vocab.gz", "word2vec_100_3.compressed.npz") print(word2vec.vocab_vector("bierut"))

Download (GitHub)

Wikipedia2Vec

Wikipedia2Vec is a toolkit for learning joint representations of words and Wikipedia entities. We share Polish embeddings learned using a modified version of the library in which we added lemmatization and fixed some issues regarding parsing wiki dumps for languages other than English. Embedding models are available in sizes from 100 to 800 dimensions. A simple example:

from wikipedia2vec import Wikipedia2Vec wiki2vec = Wikipedia2Vec.load("wiki2vec-plwiki-100.bin") print(wiki2vec.most_similar(wiki2vec.get_entity("Bolesław Bierut"))) # (<Entity Bolesław Bierut>, 1.0), (<Word bierut>, 0.75790733), (<Word gomułka>, 0.7276504), # (<Entity Krajowa Rada Narodowa>, 0.7081445), (<Entity Władysław Gomułka>, 0.7043667) [...]

Download embeddings: 100d, 300d, 500d, 800d.

Language models

ELMo

Embeddings from Language Models (ELMo) is a contextual embedding presented in Deep contextualized word representations by Peters et al. Sample usage with PyTorch below, for a more detailed instructions for integrating ELMo with your model please refer to the official repositories github.com/allenai/bilm-tf (Tensorflow) and github.com/allenai/allennlp (PyTorch).

from allennlp.commands.elmo import ElmoEmbedder elmo = ElmoEmbedder("options.json", "weights.hdf5") print(elmo.embed_sentence(["Zażółcić", "gęślą", "jaźń"]))

Download (GitHub)

RoBERTa

Language model for Polish based on popular transformer architecture. We provide weights for improved BERT language model introduced in RoBERTa: A Robustly Optimized BERT Pretraining Approach. We provide two RoBERTa models for Polish - base and large model. A summary of pre-training parameters for each model is shown in the table below. We release two version of the each model: one in the Fairseq format and the other in the HuggingFace Transformers format. More information about the models can be found in a separate repository.

<table> <thead> <th>Model</th> <th>L / H / A*</th> <th>Batch size</th> <th>Update steps</th> <th>Corpus size</th> <th>Fairseq</th> <th>Transformers</th> </thead> <tr> <td>RoBERTa&nbsp;(base)</td> <td>12&nbsp;/&nbsp;768&nbsp;/&nbsp;12</td> <td>8k</td> <td>125k</td> <td>~20GB</td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models/roberta_base_fairseq.zip">v0.9.0</a> </td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models-transformers-v3.4.0/roberta_base_transformers.zip">v3.4</a> </td> </tr> <tr> <td>RoBERTa&#8209;v2&nbsp;(base)</td> <td>12&nbsp;/&nbsp;768&nbsp;/&nbsp;12</td> <td>8k</td> <td>400k</td> <td>~20GB</td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models-v2/roberta_base_fairseq.zip">v0.10.1</a> </td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models-v2/roberta_base_transformers.zip">v4.4</a> </td> </tr> <tr> <td>RoBERTa&nbsp;(large)</td> <td>24&nbsp;/&nbsp;1024&nbsp;/&nbsp;16</td> <td>30k</td> <td>50k</td> <td>~135GB</td> <td> <a href="https://github.com/sdadas/polish-roberta/releases/download/models/roberta_large_fairseq.zip">v0.9.0</a> </td> <td> <a

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多