RePlay 是一个先进的框架,旨在促进推荐系统的开发和评估。它提供了一套强大的工具,涵盖了推荐系统管道的整个生命周期:
<a name="toc"></a>
<a name="installation"></a>
默认推荐通过 pip
包管理器进行安装:
pip install replay-rec
这种情况下,将安装不包含 PySpark
和 PyTorch
依赖的 core
包。
同时 experimental
子模块也不会被安装。
要安装 experimental
子模块,请指定带有 rc0
后缀的版本。
例如:
pip install replay-rec==XX.YY.ZZrc0
除了核心包之外,还提供了几个附加功能,包括:
[spark]
:安装 PySpark 功能[torch]
:安装 PyTorch 和 Lightning 功能[all]
:[spark]
[torch]
示例:
# 安装带有 PySpark 依赖的核心包 pip install replay-rec[spark] # 安装带有实验子模块和 PySpark 依赖的包 pip install replay-rec[spark]==XX.YY.ZZrc0
要从源代码构建 RePlay,请使用此说明。
如果在安装 RePlay 过程中遇到错误,请查看故障排除指南。
<a name="quickstart"></a>
from rs_datasets import MovieLens from replay.data import Dataset, FeatureHint, FeatureInfo, FeatureSchema, FeatureType from replay.data.dataset_utils import DatasetLabelEncoder from replay.metrics import HitRate, NDCG, Experiment from replay.models import ItemKNN from replay.utils.spark_utils import convert2spark from replay.utils.session_handler import State from replay.splitters import RatioSplitter spark = State().session ml_1m = MovieLens("1m") K=10 # 数据预处理 interactions = convert2spark(ml_1m.ratings) # 数据拆分 splitter = RatioSplitter( test_size=0.3, divide_column="user_id", query_column="user_id", item_column="item_id", timestamp_column="timestamp", drop_cold_items=True, drop_cold_users=True, ) train, test = splitter.split(interactions) # 数据集创建 feature_schema = FeatureSchema( [ FeatureInfo( column="user_id", feature_type=FeatureType.CATEGORICAL, feature_hint=FeatureHint.QUERY_ID, ), FeatureInfo( column="item_id", feature_type=FeatureType.CATEGORICAL, feature_hint=FeatureHint.ITEM_ID, ), FeatureInfo( column="rating", feature_type=FeatureType.NUMERICAL, feature_hint=FeatureHint.RATING, ), FeatureInfo( column="timestamp", feature_type=FeatureType.NUMERICAL, feature_hint=FeatureHint.TIMESTAMP, ), ] ) train_dataset = Dataset( feature_schema=feature_schema, interactions=train, ) test_dataset = Dataset( feature_schema=feature_schema, interactions=test, ) # 数据编码 encoder = DatasetLabelEncoder() train_dataset = encoder.fit_transform(train_dataset) test_dataset = encoder.transform(test_dataset) # 模型训练 model = ItemKNN() model.fit(train_dataset) # 模型推理 encoded_recs = model.predict( dataset=train_dataset, k=K, queries=test_dataset.query_ids, filter_seen_items=True, ) recs = encoder.query_and_item_id_encoder.inverse_transform(encoded_recs) # 模型评估 metrics = Experiment( [NDCG(K), HitRate(K)], test, query_column="user_id", item_column="item_id", rating_column="rating", ) metrics.add_result("ItemKNN", recs) print(metrics.results)
<a name="examples"></a>
视频指南:
研究论文:
<a name="contributing"></a>
我们欢迎社区贡献。详情请查看我们的贡献指南。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字 人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号