RePlay 是一个先进的框架,旨在促进推荐系统的开发和评估。它提供了一套强大的工具,涵盖了推荐系统管道的整个生命周期:
<a name="toc"></a>
<a name="installation"></a>
默认推荐通过 pip
包管理器进行安装:
pip install replay-rec
这种情况下,将安装不包含 PySpark
和 PyTorch
依赖的 core
包。
同时 experimental
子模块也不会被安装。
要安装 experimental
子模块,请指定带有 rc0
后缀的版本。
例如:
pip install replay-rec==XX.YY.ZZrc0
除了核心包之外,还提供了几个附加功能,包括:
[spark]
:安装 PySpark 功能[torch]
:安装 PyTorch 和 Lightning 功能[all]
:[spark]
[torch]
示例:
# 安装带有 PySpark 依赖的核心包 pip install replay-rec[spark] # 安装带有实验子模块和 PySpark 依赖的包 pip install replay-rec[spark]==XX.YY.ZZrc0
要从源代码构建 RePlay,请使用此说明。
如果在安装 RePlay 过程中遇到错误,请查看故障排除指南。
<a name="quickstart"></a>
from rs_datasets import MovieLens from replay.data import Dataset, FeatureHint, FeatureInfo, FeatureSchema, FeatureType from replay.data.dataset_utils import DatasetLabelEncoder from replay.metrics import HitRate, NDCG, Experiment from replay.models import ItemKNN from replay.utils.spark_utils import convert2spark from replay.utils.session_handler import State from replay.splitters import RatioSplitter spark = State().session ml_1m = MovieLens("1m") K=10 # 数据预处理 interactions = convert2spark(ml_1m.ratings) # 数据拆分 splitter = RatioSplitter( test_size=0.3, divide_column="user_id", query_column="user_id", item_column="item_id", timestamp_column="timestamp", drop_cold_items=True, drop_cold_users=True, ) train, test = splitter.split(interactions) # 数据集创建 feature_schema = FeatureSchema( [ FeatureInfo( column="user_id", feature_type=FeatureType.CATEGORICAL, feature_hint=FeatureHint.QUERY_ID, ), FeatureInfo( column="item_id", feature_type=FeatureType.CATEGORICAL, feature_hint=FeatureHint.ITEM_ID, ), FeatureInfo( column="rating", feature_type=FeatureType.NUMERICAL, feature_hint=FeatureHint.RATING, ), FeatureInfo( column="timestamp", feature_type=FeatureType.NUMERICAL, feature_hint=FeatureHint.TIMESTAMP, ), ] ) train_dataset = Dataset( feature_schema=feature_schema, interactions=train, ) test_dataset = Dataset( feature_schema=feature_schema, interactions=test, ) # 数据编码 encoder = DatasetLabelEncoder() train_dataset = encoder.fit_transform(train_dataset) test_dataset = encoder.transform(test_dataset) # 模型训练 model = ItemKNN() model.fit(train_dataset) # 模型推理 encoded_recs = model.predict( dataset=train_dataset, k=K, queries=test_dataset.query_ids, filter_seen_items=True, ) recs = encoder.query_and_item_id_encoder.inverse_transform(encoded_recs) # 模型评估 metrics = Experiment( [NDCG(K), HitRate(K)], test, query_column="user_id", item_column="item_id", rating_column="rating", ) metrics.add_result("ItemKNN", recs) print(metrics.results)
<a name="examples"></a>
视频指南:
研究论文:
<a name="contributing"></a>
我们欢迎社区贡献。详情请查看我们的贡献指南。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能, 是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日 常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足 你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解 答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档 格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具 、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号