lo

lo

基于泛型的Go函数式编程工具库

lo是一个基于Go 1.18+泛型的函数式编程库,提供了丰富的工具用于处理切片、映射和通道。相比反射实现,lo具有更好的类型安全性和性能。该库涵盖了数据处理、字符串操作、数学计算和并发编程等功能,可提升Go开发效率。

Go泛型切片映射迭代Github开源项目

lo - Iterate over slices, maps, channels...

tag Go Version GoDoc Build Status Go report Coverage Contributors License

samber/lo is a Lodash-style Go library based on Go 1.18+ Generics.

This project started as an experiment with the new generics implementation. It may look like Lodash in some aspects. I used to code with the fantastic "go-funk" package, but "go-funk" uses reflection and therefore is not typesafe.

As expected, benchmarks demonstrate that generics are much faster than implementations based on the "reflect" package. Benchmarks also show similar performance gains compared to pure for loops. See below.

In the future, 5 to 10 helpers will overlap with those coming into the Go standard library (under package names slices and maps). I feel this library is legitimate and offers many more valuable abstractions.

See also:

  • samber/do: A dependency injection toolkit based on Go 1.18+ Generics
  • samber/mo: Monads based on Go 1.18+ Generics (Option, Result, Either...)

Why this name?

I wanted a short name, similar to "Lodash" and no Go package uses this name.

lo

🚀 Install

go get github.com/samber/lo@v1

This library is v1 and follows SemVer strictly.

No breaking changes will be made to exported APIs before v2.0.0.

This library has no dependencies outside the Go standard library.

💡 Usage

You can import lo using:

import ( "github.com/samber/lo" lop "github.com/samber/lo/parallel" )

Then use one of the helpers below:

names := lo.Uniq([]string{"Samuel", "John", "Samuel"}) // []string{"Samuel", "John"}

Most of the time, the compiler will be able to infer the type so that you can call: lo.Uniq([]string{...}).

Tips for lazy developers

I cannot recommend it, but in case you are too lazy for repeating lo. everywhere, you can import the entire library into the namespace.

import ( . "github.com/samber/lo" )

I take no responsibility on this junk. 😁 💩

🤠 Spec

GoDoc: https://godoc.org/github.com/samber/lo

Supported helpers for slices:

Supported helpers for maps:

Supported math helpers:

Supported helpers for strings:

Supported helpers for tuples:

Supported helpers for time and duration:

Supported helpers for channels:

Supported intersection helpers:

Supported search helpers:

Conditional helpers:

Type manipulation helpers:

Function helpers:

Concurrency helpers:

Error handling:

Constraints:

  • Clonable

Filter

Iterates over a collection and returns an array of all the elements the predicate function returns true for.

even := lo.Filter([]int{1, 2, 3, 4}, func(x int, index int) bool { return x%2 == 0 }) // []int{2, 4}

[play]

Map

Manipulates a slice of one type and transforms it into a slice of another type:

import "github.com/samber/lo" lo.Map([]int64{1, 2, 3, 4}, func(x int64, index int) string { return strconv.FormatInt(x, 10) }) // []string{"1", "2", "3", "4"}

[play]

Parallel processing: like lo.Map(), but the mapper function is called in a goroutine. Results are returned in the same order.

import lop "github.com/samber/lo/parallel" lop.Map([]int64{1, 2, 3, 4}, func(x int64, _ int) string { return strconv.FormatInt(x, 10) }) // []string{"1", "2", "3", "4"}

FilterMap

Returns a slice which obtained after both filtering and mapping using the given callback function.

The callback function should return two values: the result of the mapping operation and whether the result element should be included or not.

matching := lo.FilterMap([]string{"cpu", "gpu", "mouse", "keyboard"}, func(x string, _ int) (string, bool) { if strings.HasSuffix(x, "pu") { return "xpu", true } return "", false }) // []string{"xpu", "xpu"}

[play]

FlatMap

Manipulates a slice and transforms and flattens it to a slice of another type. The transform function can either return a slice or a nil, and in the nil case no value is added to the final slice.

lo.FlatMap([]int64{0, 1, 2}, func(x int64, _ int) []string { return []string{ strconv.FormatInt(x, 10), strconv.FormatInt(x, 10), } }) // []string{"0", "0", "1", "1", "2", "2"}

[play]

Reduce

Reduces a collection to a single value. The value is calculated by accumulating the result of running each element in the collection through an accumulator function. Each successive invocation is supplied with the return value returned by the previous call.

sum := lo.Reduce([]int{1, 2, 3, 4}, func(agg int, item int, _ int) int { return agg + item }, 0) // 10

[play]

ReduceRight

Like lo.Reduce except that it iterates over elements of collection from right to left.

result := lo.ReduceRight([][]int{{0, 1}, {2, 3}, {4, 5}}, func(agg []int, item []int, _ int) []int { return append(agg, item...) }, []int{}) // []int{4, 5, 2, 3, 0, 1}

[play]

ForEach

Iterates over elements of a collection and invokes the function over each element.

import "github.com/samber/lo" lo.ForEach([]string{"hello", "world"}, func(x string, _ int) { println(x) }) // prints "hello\nworld\n"

[play]

Parallel processing: like lo.ForEach(), but the callback is called as a goroutine.

import lop "github.com/samber/lo/parallel" lop.ForEach([]string{"hello", "world"}, func(x string, _ int) { println(x) }) // prints "hello\nworld\n" or "world\nhello\n"

ForEachWhile

Iterates over collection elements and invokes iteratee for each element collection return value decide to continue or break, like do while().

list := []int64{1, 2, -42, 4} lo.ForEachWhile(list, func(x int64, _ int) bool { if x < 0 { return false } fmt.Println(x) return true }) // 1 // 2

[play]

Times

Times invokes the iteratee n times, returning an array of the results of each invocation. The iteratee is invoked with index as argument.

import "github.com/samber/lo" lo.Times(3, func(i int) string { return strconv.FormatInt(int64(i), 10) }) // []string{"0", "1", "2"}

[play]

Parallel processing: like lo.Times(), but callback is called in goroutine.

import lop "github.com/samber/lo/parallel" lop.Times(3, func(i int) string { return strconv.FormatInt(int64(i), 10) }) // []string{"0", "1", "2"}

Uniq

Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array.

uniqValues := lo.Uniq([]int{1, 2, 2, 1}) // []int{1,

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多