
Docs | Overview | Install Guide | Examples | API Reference | Contribution Guide
Movis is an engine written in Python, purposed for video production tasks. This library allows users to generate various types of videos, including but not limited to presentation videos, motion graphics, shader art coding, and game commentary videos, through Python.
The following features are not found in other Python libraries for video editing:
To put it simply, Movis is a library for complex video editing that includes several features found in proprietary software.
Movis is a pure Python library and can be installed via the Python Package Index:
$ pip install movis
We have confirmed that it works with Python 3.9 to 3.11.
Similar to other video editing software, Movis employs the concept of "compositions" as the fundamental unit for video editing. Within a composition, users can include multiple layers and manipulate these layers' attributes over a time scale to produce a video. Effects can also be selectively applied to these layers as needed.
Here's some example code:
import movis as mv scene = mv.layer.Composition(size=(1920, 1080), duration=5.0) scene.add_layer(mv.layer.Rectangle(scene.size, color='#fb4562')) # Set background pos = scene.size[0] // 2, scene.size[1] // 2 scene.add_layer( mv.layer.Text('Hello World!', font_size=256, font_family='Helvetica', color='#ffffff'), name='text', # The layer item can be accessed by name offset=1.0, # Show the text after one second position=pos, # The layer is centered by default, but it can also be specified explicitly anchor_point=(0.0, 0.0), opacity=1.0, scale=1.0, rotation=0.0, # anchor point, opacity, scale, and rotation are also supported blending_mode='normal') # Blending mode can be specified for each layer. scene['text'].add_effect(mv.effect.DropShadow(offset=10.0)) # Multiple effects can be added. scene['text'].scale.enable_motion().extend( keyframes=[0.0, 1.0], values=[0.0, 1.0], easings=['ease_in_out']) # Fade-in effect. It means that the text appears fully two seconds later. scene['text'].opacity.enable_motion().extend([0.0, 1.0], [0.0, 1.0]) scene.write_video('output.mp4')
The composition can also be used as a layer. By combining multiple compositions and layers, users can create complex videos.
scene2 = mv.layer.Composition(scene.size, duration=scene.duration) layer_item = scene2.add_layer(scene, name='scene') # Equivalent to scene2['scene'].add_effect(...) layer_item.add_effect(mv.effect.GaussianBlur(radius=10.0))
Of course, movis also supports simple video processing such as video merging and trimming.
intro = mv.layer.Video('intro.mp4') title = mv.layer.Video('title.mp4') chapter1 = mv.layer.Composition(size=(1920, 1080), duration=60.0) ... main = mv.concatenate([intro, title, chapter1, ...])
raw_video = mv.layer.Video('video.mp4') # select 0.0-1.0 secs and 2.0-3.0 secs, and concatenate them video = mv.trim(raw_video, start_times=[0.0, 2.0], end_times=[1.0, 3.0])
layer = mv.layer.Image("image.png", duration=1.0) # crop from x, y = (10, 20) with size w, h = (100, 200) layer = mv.crop(layer, (10, 20, 100, 200))
layer = mv.layer.Video('video.mp4') width, height = layer.size # resize to 1/2 main = mv.layer.Composition(size=(width // 2, height // 2), duration=layer.duration) main.add_layer(layer, scale=0.5)
layer = mv.layer.Video('video.mp4') video1 = mv.fade_in(layer, 1.0) # fade-in for 1.0 secs video2 = mv.fade_out(layer, 1.0) # fade-out for 1.0 secs video3 = mv.fade_in_out(layer, 1.0, 2.0) # fade-in for 1.0 secs and fade-out for 2.0 secs
Movis is designed to make it easy for users to implement custom layers and effects. This means that engineers can easily integrate their preferred visual effects and animations using Python.
For example, let's say you want to create a demo video using your own machine learning model for tasks like anonymizing face images or segmenting videos. With Movis, you can easily do this without the need for more complex languages like C++, by directly using popular libraries such as PyTorch or Jax. Additionally, for videos that make use of GPGPU like shader art, you can implement these intuitively through Python libraries like Jax or cupy.
For example, to implement a user-defined layer, you only need to create a function that, given a time,
returns an np.ndarray with a shape of (H, W, 4) and dtype of np.uint8 in RGBA order, or returns None.
import numpy as np import movis as mv size = (640, 480) def get_radial_gradient_image(time: float) -> np.ndarray: center = np.array([size[1] // 2, size[0] // 2]) radius = min(size) inds = np.mgrid[:size[1], :size[0]] - center[:, None, None] r = np.sqrt((inds ** 2).sum(axis=0)) p = 255 - (np.clip(r / radius, 0, 1) * 255).astype(np.uint8) img = np.zeros((size[1], size[0], 4), dtype=np.uint8) img[:, :, :3] = p[:, :, None] img[:, :, 3] = 255 return img scene = mv.layer.Composition(size, duration=5.0) scene.add_layer(get_radial_gradient_image) scene.write_video('output.mp4')
If you want to specify the duration of a layer,
the duration property is required. Movis also offers caching features
to accelerate rendering. If you wish to speed up rendering for layers
where the frame remains static, you can implement the get_key(time: float) method:
class RadialGradientLayer: def __init__(self, size: tuple[int, int], duration: float): self.size = size self.duration = duration self.center = np.array([size[1] // 2, size[0] // 2]) def get_key(self, time: float) -> Hashable: # Returns 1 since the same image is always returned return 1 def __call__(self, time: float) -> None | np.ndarray: # ditto.
Effects for layers can also be implemented in a similar straightforward manner.
import cv2 import movis as mv import numpy as np def apply_gaussian_blur(prev_image: np.ndarray, time: float) -> np.ndarray: return cv2.GaussianBlur(prev_image, (7, 7), -1) scene = mv.layer.Composition(size=(1920, 1080), duration=5.0) scene.add_layer(mv.layer.Rectangle(scene.size, color='#fb4562')) scene.add_layer( mv.layer.Text('Hello World!', font_size=256, font_family='Helvetica', color='#ffffff'), name='text') scene['text'].add_effect(apply_gaussian_blur)
Animation can be set up on a keyframe basis, but in some cases, users may want to animate using user-defined functions. movis provides methods to handle such situations as well.
import movis as mv import numpy as np scene = mv.layer.Composition(size=(1920, 1080), duration=5.0) scene.add_layer( mv.layer.Text('Hello World!', font_size=256, font_family='Helvetica', color='#ffffff'), name='text') scene['text'].position.add_function( lambda prev_value, time: prev_value + np.array([0, np.sin(time * 2 * np.pi) * 100]), )
Jupyter notebooks are commonly used for data analysis that requires a lot of trial and error using Python. Some methods for Jupyter notebooks are also included in movis to speed up the video production process.
For example, composition.render_and_play() is often used to
preview a section of a video within a Jupyter notebook.
import movis as mv scene = mv.layer.Composition(size=(1920, 1080), duration=10.0) ... # add layers and effects... scene.render_and_play( start_time=5.0, end_time=10.0, preview_level=2) # play the video from 5 to 10 seconds
This method has an argument called preview_level.
For example, by setting it to 2, you can sacrifice video quality
by reducing the final resolution to 1/2 in exchange for faster rendering.
If you want to reduce the resolution when exporting videos or still images using
composition.write_video() or similar methods,
you can use the syntax with composition.preview(level=2).
import movis as mv scene = mv.layer.Composition(size=(1920, 1080), duration=10.0) ... # add layers and effects... with scene.preview(level=2): scene.write_video('output.mp4') # The resolution of the output video is 1/2. img = scene(5.0) # retrieve an image at t = 5.0 assert img.shape == (540, 960, 4)
Within this scope, the resolution of all videos and images will be reduced to 1/2. This can be useful during the trial and error process.
MIT License (see LICENSE for details).


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号