cog

cog

专门用于将机器学习模型打包进生产级容器的开源工具

Cog是一款开源工具,专门用于将机器学习模型打包进生产级容器。它简化了自定义Docker环境的配置过程,能自动创建符合最佳实践的Docker镜像。Cog支持多版本CUDA,标准化的Python I/O 定义,队列处理和即将推出的云存储功能,使得从开发到部署的全过程更加高效。用户可选在本地或通过Replicate部署模型。

CogDocker机器学习部署开源Github开源项目

Cog 项目介绍

Cog是一款开源工具,专为将机器学习模型打包成标准化、可用于生产的容器而设计。利用Cog,用户可以轻松地将已打包的模型部署到自己的基础设施,或是使用Replicate来进行部署。

项目亮点

  • 📦 免除Docker文件的困扰:自己编写Dockerfile或许让人困惑,而Cog通过一个简单的配置文件定义环境,并自动生成包含最佳实践的Docker镜像。包括Nvidia基础镜像、依赖项的高效缓存、特定Python版本的安装及合理预设的环境变量等。

  • 🤬️ 杜绝CUDA配置的麻烦:Cog可以识别CUDA/cuDNN/PyTorch/Tensorflow/Python的兼容组合,并自动为用户配置。

  • 用标准Python定义模型的输入和输出:Cog会生成OpenAPI模式,并用Pydantic验证输入和输出。

  • 🎁 自动HTTP预测服务器:借助FastAPI,根据模型的类型动态生成RESTful HTTP API。

  • 🥞 自动队列工作者:对于长时间运行的深度学习模型或批处理,队列是最佳的架构。Cog模型自带此功能。目前支持Redis,未来将支持更多。

  • ☁️ 云存储支持:可直接读取和写入Amazon S3与Google Cloud Storage(即将推出)。

  • 🚀 生产准备就绪:可部署到任何支持Docker镜像的环境,包括用户自己的基础设施或Replicate

工作原理

用户可以通过cog.yaml文件定义模型运行的Docker环境,例如:

build: gpu: true system_packages: - "libgl1-mesa-glx" - "libglib2.0-0" python_version: "3.12" python_packages: - "torch==2.3" predict: "predict.py:Predictor"

使用predict.py文件定义如何在模型上运行预测:

from cog import BasePredictor, Input, Path import torch class Predictor(BasePredictor): def setup(self): """将模型载入内存以高效运行多次预测""" self.model = torch.load("./weights.pth") def predict(self, image: Path = Input(description="输入灰度图像") ) -> Path: """在模型上运行一次预测""" processed_image = preprocess(image) output = self.model(processed_image) return postprocess(output)

通过命令行运行预测:

$ cog predict -i image=@input.jpg --> 正在构建Docker镜像... --> 运行预测... --> 输出保存至output.jpg

或者,构建Docker镜像以供部署:

$ cog build -t my-colorization-model --> 正在构建Docker镜像... --> 构建成功 my-colorization-model:latest $ docker run -d -p 5000:5000 --gpus all my-colorization-model $ curl http://localhost:5000/predictions -X POST \ -H 'Content-Type: application/json' \ -d '{"input": {"image": "https://.../input.jpg"}}'

或者通过serve命令结合构建与运行:

$ cog serve -p 8080 $ curl http://localhost:8080/predictions -X POST \ -H 'Content-Type: application/json' \ -d '{"input": {"image": "https://.../input.jpg"}}'

项目背景

将机器学习模型投入生产对研究人员来说并不容易。虽然Docker能够解决一部分问题,但其复杂性让研究人员望而却步。本项目的创始人Andreas JanssonBen Firshman,正是看到了这一需求,才开发出Cog。他们在Spotify与Docker的工作经历中,分别积累了丰富的模型部署经验。

使用需知

  • 需要macOS、Linux或Windows 11。Cog支持在这些操作系统上运行。
  • 需要Docker。Cog使用Docker来创建模型的容器,因此需要事先安装Docker。如果使用Docker Engine而非Docker Desktop,还需安装Buildx。

用户可以通过Homebrew在macOS上安装Cog:

brew install cog

此外,还可以通过项目提供的安装脚本下载安装最新版本。

升级指南

已安装Homebrew的macOS用户可以通过以下命令升级Cog:

brew upgrade cog

其他用户可以重复使用最初安装的命令来升级Cog至最新版本。

下一步

如需帮助,欢迎加入我们的Discord频道。项目致力于欢迎各种形式的贡献,感谢所有支持和帮助Cog成长的贡献者们。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多