利用 LLMPerf,我们对一系列 LLM 推理提供商进行了基准测试。 我们的分析主要评估它们在以下关键指标下的性能、可靠性和效率:
LLMPerf 排行榜以清晰、透明的方式展示结果。我们的目标是为用户和开发者提供每个提供商能力和局限性的重要洞察,为未来的集成和部署决策提供信息。为了保持透明度和实用性,我们还在 运行配置 中提供了可复现的步骤,如下所示:
对于每次基准测试运行,都使用 LLMPerf 仓库 中的以下命令模板执行:
python token_benchmark_ray.py \
--model <MODEL_NAME> \
--mean-input-tokens 550 \
--stddev-input-tokens 0 \
--mean-output-tokens 150 \
--stddev-output-tokens 0 \
--max-num-completed-requests 150 \
--num-concurrent-requests 5 \
--llm-api <litellm/openai>
对每个提供商,我们执行:
我们在 us-west-2(俄勒冈)区域的 AWS EC2(实例类型:i4i.large)上运行 LLMPerf 客户端。结果截至 2023 年 12 月 19 日太平洋 标准时间凌晨 3 点。您可以在 raw_data 文件夹中找到详细结果。
请注意,可能存在一些潜在的偏差来源或与您感知行为的差异:
输出令牌吞吐量以每秒返回的平均输出令牌数来衡量。我们通过向每个 LLM 推理提供商发送 150 个请求来收集结果,并根据 150 个请求计算平均输出令牌吞吐量。更高的输出令牌吞吐量表示 LLM 推理提供商的吞吐量更高。
| 框架 | 模型 | 中位数 | 平均值 | 最小值 | 最大值 | P25 | P75 | P95 | P99 |
|---|---|---|---|---|---|---|---|---|---|
| anyscale | meta-llama/Llama-2-70b-chat-hf | 66 | 63 | 22 | 86 | 56 | 72 | 77 | 82 |
| bedrock | meta.llama2-70b-chat-v1 | 21 | 21 | 13 | 22 | 20 | 22 | 22 | 22 |
| fireworks | accounts/fireworks/models/llama-v2-70b-chat | 40 | 40 | 33 | 46 | 38 | 42 | 45 | 46 |
| groq | llama2-70b-4096 | 185 | 184 | 148 | 208 | 174 | 195 | 207 | 208 |
| lepton | llama2-70b | 33 | 33 | 31 | 39 | 32 | 34 | 34 | 38 |
| perplexity | llama-2-70b-chat | 30 | 30 | 8 | 44 | 29 | 31 | 36 | 44 |
| replicate | meta/llama-2-70b-chat | 10 | 9 | 2 | 11 | 10 | 10 | 11 | 11 |
| together | together_ai/togethercomputer/llama-2-70b-chat | 65 | 64 | 25 | 79 | 61 | 68 | 74 | 76 |
| 框架 | 模型 | 中位数 | 平均值 | 最小值 | 最大值 | P25 | P75 | P95 | P99 |
|---|---|---|---|---|---|---|---|---|---|
| anyscale | meta-llama/Llama-2-13b-chat-hf | 120 | 120 | 81 | 156 | 110 | 128 | 141 | 148 |
| bedrock | meta.llama2-13b-chat-v1 | 36 | 35 | 19 | 39 | 33 | 38 | 38 | 39 |
| fireworks | accounts/fireworks/models/llama-v2-13b-chat | 42 | 42 | 39 | 45 | 41 | 43 | 44 | 44 |
| lepton | llama2-13b | 43 | 43 | 37 | 48 | 42 | 44 | 46 | 48 |
| replicate | meta/llama-2-13b-chat | 16 | 18 | 6 | 35 | 12 | 20 | 35 | 35 |
| together | together_ai/togethercomputer/llama-2-13b-chat | 102 | 101 | 1 | 123 | 98 | 108 | 119 | 122 |
| 框架 | 模型 | 中位数 | 平均值 | 最小值 | 最大值 | P25 | P75 | P95 | P99 |
|---|---|---|---|---|---|---|---|---|---|
| anyscale | meta-llama/Llama-2-7b-chat-hf | 51 | 51 | 45 | 57 | 49 | 54 | 56 | 57 |
| fireworks | accounts/fireworks/models/llama-v2-7b-chat | 76 | 76 | 53 | 82 | 75 | 78 | 79 | 82 |
| lepton | llama2-7b | 36 | 36 | 33 | 40 | 35 | 38 | 40 | 40 |
| replicate | meta/llama-2-7b-chat | 26 | 32 | 2 | 78 | 20 | 35 | 73 | 77 |
| together | together_ai/togethercomputer/llama-2-7b-chat | 75 | 75 | 50 | 95 | 70 | 81 | 87 | 90 |
对于流式应用,TTFT 是 LLM 返回第一个令牌所需的时间。
| 框架 | 模型 | 中位数 | 平均值 | 最小值 | 最大值 | P25 | P75 | P95 | P99 |
|---|---|---|---|---|---|---|---|---|---|
| anyscale | meta-llama/Llama-2-13b-chat-hf | 0.20 | 0.22 | 0.18 | 0.56 | 0.19 | 0.22 | 0.34 | 0.50 |
| bedrock | meta.llama2-13b-chat-v1 | 0.27 | 0.33 | 0.16 | 0.77 | 0.25 | 0.3 | 0.74 | 0.76 |
| fireworks | accounts/fireworks/models/llama-v2-13b-chat | 0.49 | 0.47 | 0.28 | 0.66 | 0.39 | 0.54 | 0.59 | 0.65 |
| lepton | llama2-13b | 1.08 | 1.07 | 0.82 | 1.4 | 0.95 | 1.15 | 1.24 | 1.37 |
| replicate | meta/llama-2-13b-chat | 5.65 | 6.27 | 0.98 | 17.01 | 3.62 | 8.31 | 14.76 | 16.71 |
| together | together_ai/togethercomputer/llama-2-13b-chat | 0.54 | 0.89 | 0.39 | 0.91 | 0.46 | 0.60 | 0.70 | 0.81 |
* 在数据收集时,Perplexity不提供13B模型。可以在这里找到更多关于提供模型的详细信息。
| 框架 | 模型 | 中位数 | 平均值 | 最小值 | 最大值 | P25 | P75 | P95 | P99 |
|---|---|---|---|---|---|---|---|---|---|
| anyscale | meta-llama/Llama-2-7b-chat-hf | 0.20 | 0.23 | 0.18 | 0.50 | 0.19 | 0.23 | 0.34 | 0.46 |
| fireworks | accounts/fireworks/models/llama-v2-7b-chat | 0.33 | 0.33 | 0.21 | 1.09 | 0.32 | 0.34 | 0.37 | 0.88 |
| lepton | llama2-7b | 1.13 | 1.11 | 0.88 | 1.33 | 1.04 | 1.18 | 1.29 | 1.32 |
| replicate | meta/llama-2-7b-chat | 3.68 | 3.61 | 0.99 | 7.2 | 2.31 | 5.01 | 6.37 | 6.99 |
| together | together_ai/togethercomputer/llama-2-7b-chat | 0.52 | 0.58 | 0.42 | 0.95 | 0.46 | 0.71 | 0.84 | 0.94 |
* 在数据收集时,Perplexity不提供Llama-2-7B模型。可以在这里找到更多关于提供模型的详细信息。
* 在数据收集时,Bedrock不提供Llama-2-7B模型。可以在这里找到更多关于提供模型的详细信息。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号