cuml

cuml

高性能GPU机器学习库

cuML是RAPIDS生态系统中的GPU加速机器学习库,提供与scikit-learn兼容的API。它支持在GPU上执行传统表格机器学习任务,无需深入CUDA编程。对大型数据集,cuML的性能可比CPU实现提升10-50倍。该库还支持多GPU和多节点多GPU操作,并通过Dask实现分布式计算。

cuMLGPU机器学习RAPIDSPython API多GPU计算Github开源项目

<div align="left"><img src="https://yellow-cdn.veclightyear.com/835a84d5/dbd3febf-0572-4cb3-84da-95add836d8d4.png" width="90px"/> cuML - GPU机器学习算法</div>

cuML是一套实现机器学习算法和数学基元函数的库,它们与其他RAPIDS项目共享兼容的API。

cuML使数据科学家、研究人员和软件工程师能够在GPU上运行传统的表格式机器学习任务,而无需深入了解CUDA编程的细节。在大多数情况下,cuML的Python API与scikit-learn的API相匹配。

对于大型数据集,这些基于GPU的实现可以比其CPU等效实现快10-50倍。有关性能的详细信息,请参阅cuML基准测试笔记本

例如,以下Python代码片段加载输入并使用cuDF在GPU上计算DBSCAN聚类:

import cudf from cuml.cluster import DBSCAN # 创建并填充GPU DataFrame gdf_float = cudf.DataFrame() gdf_float['0'] = [1.0, 2.0, 5.0] gdf_float['1'] = [4.0, 2.0, 1.0] gdf_float['2'] = [4.0, 2.0, 1.0] # 设置并拟合聚类 dbscan_float = DBSCAN(eps=1.0, min_samples=1) dbscan_float.fit(gdf_float) print(dbscan_float.labels_)

输出:

0    0
1    1
2    2
dtype: int32

cuML还支持多GPU和多节点多GPU操作,使用Dask实现越来越多的算法。以下Python代码片段从CSV文件读取输入,并在单个节点的多个GPU上,通过Dask工作集群执行最近邻查询:

初始化配置了UCXLocalCUDACluster,以实现CUDA数组的快速传输

# 初始化UCX以实现CUDA数组的高速传输 from dask_cuda import LocalCUDACluster # 创建Dask单节点CUDA集群,每个设备一个工作进程 cluster = LocalCUDACluster(protocol="ucx", enable_tcp_over_ucx=True, enable_nvlink=True, enable_infiniband=False)

加载数据并执行k-最近邻搜索。cuml.dask估计器还支持Dask.Array作为输入:

from dask.distributed import Client client = Client(cluster) # 在工作进程间并行读取CSV文件 import dask_cudf df = dask_cudf.read_csv("/path/to/csv") # 拟合最近邻模型并查询 from cuml.dask.neighbors import NearestNeighbors nn = NearestNeighbors(n_neighbors = 10, client=client) nn.fit(df) neighbors = nn.kneighbors(df)

如需更多示例,请浏览我们完整的API文档,或查看我们的示例演示笔记本。最后,您可以在notebooks-contrib仓库中找到完整的端到端示例。

支持的算法

类别算法说明
聚类基于密度的空间聚类应用噪声(DBSCAN)通过Dask实现多节点多GPU
基于密度的空间聚类应用噪声的层次结构(HDBSCAN)
K-均值通过Dask实现多节点多GPU
单链接凝聚聚类
降维主成分分析(PCA)通过Dask实现多节点多GPU
增量PCA
截断奇异值分解(tSVD)通过Dask实现多节点多GPU
统一流形近似和投影(UMAP)通过Dask实现多节点多GPU推理
随机投影
t-分布随机邻居嵌入(TSNE)
用于回归或分类的线性模型线性回归(OLS)通过Dask实现多节点多GPU
带有Lasso或Ridge正则化的线性回归通过Dask实现多节点多GPU
ElasticNet回归
LARS回归(实验性)
逻辑回归通过Dask-GLM实现多节点多GPU 演示
朴素贝叶斯通过Dask实现多节点多GPU
随机梯度下降(SGD)、坐标下降(CD)和拟牛顿(QN)(包括L-BFGS和OWL-QN)求解器用于线性模型
用于回归或分类的非线性模型随机森林(RF)分类通过Dask实现实验性多节点多GPU
随机森林(RF)回归通过Dask实现实验性多节点多GPU
基于决策树模型的推理森林推理库(FIL)
K-最近邻(KNN)分类通过Dask+UCX实现多节点多GPU,使用Faiss进行最近邻查询
K-最近邻(KNN)回归通过Dask+UCX实现多节点多GPU,使用Faiss进行最近邻查询
支持向量机分类器(SVC)
Epsilon-支持向量回归(SVR)
预处理标准化、均值移除和方差缩放 / 归一化 / 分类特征编码 / 离散化 / 缺失值插补 / 多项式特征生成 / 即将推出自定义转换器和非线性变换基于Scikit-Learn预处理
时间序列Holt-Winters指数平滑
自回归综合移动平均(ARIMA)支持季节性(SARIMA)
模型解释SHAP核心解释器基于SHAP
SHAP排列解释器基于SHAP
执行设备互操作性通过最少的代码更改,可在主机/CPU或设备/GPU上互换运行估计器 演示
其他K-最近邻(KNN)搜索通过Dask+UCX实现多节点多GPU,使用Faiss进行最近邻查询

安装

请查看RAPIDS发布选择器,了解通过Conda或Docker安装每晚构建版或官方发布版cuML软件包的命令行。

从源代码构建/安装

请参阅构建指南

贡献

请查看我们的cuML贡献指南

参考文献

RAPIDS团队有许多深入技术探讨和示例的博客。您可以在Medium上找到它们。

有关cuML背后技术的更多细节,以及Python机器学习领域的更广泛概述,请参阅Sebastian Raschka、Joshua Patterson和Corey Nolet撰写的《Python中的机器学习:数据科学、机器学习和人工智能的主要发展和技术趋势》(2020)

在项目中使用cuML时,请考虑引用此文献。您可以使用以下BibTeX引用格式:

@article{raschka2020machine, title={Python中的机器学习:数据科学、机器学习和人工智能领域的主要发展和技术趋势}, author={Raschka, Sebastian and Patterson, Joshua and Nolet, Corey}, journal={arXiv预印本 arXiv:2002.04803}, year={2020} }

联系方式

RAPIDS网站上了解更多详情

<div align="left"><img src="https://yellow-cdn.veclightyear.com/835a84d5/dbd3febf-0572-4cb3-84da-95add836d8d4.png" width="265px"/></div> 开放式GPU数据科学

RAPIDS开源软件库套件旨在实现端到端数据科学和分析流程完全在GPU上执行。它依赖NVIDIA® CUDA®原语进行低级计算优化,但通过用户友好的Python接口展现GPU并行性和高带宽内存速度。

<p align="center"><img src="https://yellow-cdn.veclightyear.com/835a84d5/8565000e-963b-4a4d-9c3e-087f92b827ee.png" width="80%"/></p>

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
OmniParser

OmniParser

帮助AI理解电脑屏幕 纯视觉GUI元素的自动化解析方案

开源工具通过计算机视觉技术实现图形界面元素的智能识别与结构化处理,支持自动化测试脚本生成和辅助功能开发。项目采用模块化设计,提供API接口与多种输出格式,适用于跨平台应用场景。核心算法优化了元素定位精度,在动态界面和复杂布局场景下保持稳定解析能力。

OmniParser界面解析交互区域检测Github开源项目
Grok3

Grok3

埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型

Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。

腾讯元宝

腾讯元宝

腾讯自研的混元大模型AI助手

腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。

AI助手AI对话AI工具腾讯元宝智能体热门 AI 办公助手
Windsurf Wave 3

Windsurf Wave 3

Windsurf Editor推出第三次重大更新Wave 3

新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。

AI IDE
Cursor

Cursor

增强编程效率的AI代码编辑器

Cursor作为AI驱动的代码编辑工具,助力开发者效率大幅度提升。该工具简化了扩展、主题和键位配置的导入,可靠的隐私保护措施保证代码安全,深受全球开发者信赖。此外,Cursor持续推出更新,不断优化功能和用户体验。

AI开发辅助编程AI工具CursorAI代码编辑器
Manus

Manus

全面超越基准的 AI Agent助手

Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。

飞书知识问答

飞书知识问答

飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库

基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
DeepEP

DeepEP

DeepSeek开源的专家并行通信优化框架

DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。

下拉加载更多