neural-cherche

neural-cherche

专注于神经搜索模型微调和快速推理的工具库

Neural-Cherche 是一个专为微调和推理神经搜索模型(如 Splade、ColBERT 和 SparseEmbed)设计的库,兼容多种设备。通过该库,用户可以高效地进行模型微调,并在离线和在线环境中执行推理。此外,Neural-Cherche 提供多种检索器和排序器,支持保存嵌入以避免重复计算,适用于多种信息检索任务,并附有便捷的安装步骤和详细文档。

Neural-ChercheColBERTSpladeSparseEmbedBM25Github开源项目

Neural-Cherche 项目介绍

Neural-Cherche 是一个专为精调神经搜索模型而设计的库,主要用于模型如 Splade、ColBERT 和 SparseEmbed。在处理特定数据集时,它能够提供高效的推理方法,并支持对精调后的检索器或排序器进行操作。Neural-Cherche 的设计目标是提供一种简便有效的方法,让用户能够在离线和在线环境中利用神经搜索模型。此外,它还支持保存所有计算的嵌入,以避免冗余计算。

兼容性

Neural-Cherche 可以在多种设备上运行,包括 CPU、GPU 和 MPS 等。在精调过程中,用户可以用任何预训练的 Sentence Transformer 检查点来精调 ColBERT,而对于 Splade 和 SparseEmbed 的精调则需要一个基于语言模型 (MLM) 的预训练模型。

安装指南

要安装 Neural-Cherche,可以使用以下命令:

pip install neural-cherche

如果您计划在训练期间对模型进行评价,请使用:

pip install "neural-cherche[eval]"

快速开始

训练数据集需要由三元组 (anchor, positive, negative) 组成,其中 anchor 是查询,positive 是与 anchor 直接相关的文档,negative 是与 anchor 无关的文档。例如:

X = [ ("anchor 1", "positive 1", "negative 1"), ("anchor 2", "positive 2", "negative 2"), ("anchor 3", "positive 3", "negative 3"), ]

以下是使用 Neural-Cherche 从 Sentence Transformer 预训练检查点对 ColBERT 模型进行精调的示例:

import torch from neural_cherche import models, utils, train model = models.ColBERT( model_name_or_path="raphaelsty/neural-cherche-colbert", device="cuda" if torch.cuda.is_available() else "cpu" # 或 mps ) optimizer = torch.optim.AdamW(model.parameters(), lr=3e-6) X = [ ("query", "positive document", "negative document"), ("query", "positive document", "negative document"), ("query", "positive document", "negative document"), ] for step, (anchor, positive, negative) in enumerate(utils.iter( X, epochs=1, # 训练轮数 batch_size=8, # 每批次三元组数量 shuffle=True )): loss = train.train_colbert( model=model, optimizer=optimizer, anchor=anchor, positive=positive, negative=negative, step=step, gradient_accumulation_steps=50, ) if (step + 1) % 1000 == 0: model.save_pretrained("checkpoint")

文档检索

使用精调后的 ColBERT 模型可以对文档进行重新排序。例如:

import torch from lenlp import sparse from neural_cherche import models, rank, retrieve documents = [ {"id": "doc1", "title": "Paris", "text": "Paris is the capital of France."}, {"id": "doc2", "title": "Montreal", "text": "Montreal is the largest city in Quebec."}, {"id": "doc3", "title": "Bordeaux", "text": "Bordeaux in Southwestern France."}, ] retriever = retrieve.BM25( key="id", on=["title", "text"], count_vectorizer=sparse.CountVectorizer( normalize=True, ngram_range=(3, 5), analyzer="char_wb", stop_words=[] ), k1=1.5, b=0.75, epsilon=0.0, ) model = models.ColBERT( model_name_or_path="raphaelsty/neural-cherche-colbert", device="cuda" if torch.cuda.is_available() else "cpu" # 或 mps ) ranker = rank.ColBERT( key="id", on=["title", "text"], model=model, ) documents_embeddings = retriever.encode_documents(documents=documents) retriever.add(documents_embeddings=documents_embeddings) queries = ["Paris", "Montreal", "Bordeaux"] queries_embeddings = retriever.encode_queries(queries=queries) ranker_queries_embeddings = ranker.encode_queries(queries=queries) candidates = retriever( queries_embeddings=queries_embeddings, batch_size=32, k=100, # 检索文档数量 ) ranker_documents_embeddings = ranker.encode_candidates_documents( candidates=candidates, documents=documents, batch_size=32, ) scores = ranker( queries_embeddings=ranker_queries_embeddings, documents_embeddings=ranker_documents_embeddings, documents=candidates, batch_size=32, ) scores

预训练模型

Neural-Cherche 提供了专门为其设计的预训练检查点,例如 [raphaelsty/neural-cherche-sparse-embed] 和 [raphaelsty/neural-cherche-colbert]。这些检查点在 MS-MARCO 数据集的一个子集上进行了精调,可以进一步在特定数据集上进行精调以更好地适应特定语言。

项目贡献者

  • Benjamin Clavié
  • Arthur Satouf

参考文献

Neural-Cherche 项目使用了一些知名的学术论文作为其理论基础,包括 SPLADE、SparseEmbed、ColBERT 等项目。

许可证

本项目基于 MIT 开源许可证发布,SPLADE 模型仅可用于非商业目的,而 SparseEmbed 和 ColBERT 完全开源,包括商业用途。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多