vision

vision

TorchVision 计算机视觉库 提供数据集模型和图像处理功能

TorchVision是PyTorch生态系统的计算机视觉库,提供常用数据集、模型架构和图像变换功能。它支持torch张量和PIL图像后端,具备视频处理能力。该库同时提供Python和C++ API,适用于各种计算机视觉任务。TorchVision版本与PyTorch和Python版本兼容,持续更新以支持最新技术。

torchvision计算机视觉PyTorch图像处理深度学习Github开源项目

torchvision

torchvision总下载量 文档

torchvision包包含用于计算机视觉的常用数据集、模型架构和常见图像转换。

安装

请参阅官方说明在您的系统上安装稳定版的torchtorchvision

要从源码构建,请参阅我们的贡献页面

以下是相应的torchvision版本和支持的Python版本。

torchtorchvisionPython
main / nightlymain / nightly>=3.9, <=3.12
2.40.19>=3.8, <=3.12
2.30.18>=3.8, <=3.12
2.20.17>=3.8, <=3.11
2.10.16>=3.8, <=3.11
2.00.15>=3.8, <=3.11
<details> <summary>较旧版本</summary>
torchtorchvisionPython
1.130.14>=3.7.2, <=3.10
1.120.13>=3.7, <=3.10
1.110.12>=3.7, <=3.10
1.100.11>=3.6, <=3.9
1.90.10>=3.6, <=3.9
1.80.9>=3.6, <=3.9
1.70.8>=3.6, <=3.9
1.60.7>=3.6, <=3.8
1.50.6>=3.5, <=3.8
1.40.5==2.7, >=3.5, <=3.8
1.30.4.2 / 0.4.3==2.7, >=3.5, <=3.7
1.20.4.1==2.7, >=3.5, <=3.7
1.10.3==2.7, >=3.5, <=3.7
<=1.00.2==2.7, >=3.5, <=3.7
</details>

图像后端

Torchvision目前支持以下图像后端:

  • torch张量
  • PIL图像:

更多信息请阅读我们的文档

[不稳定] 视频后端

Torchvision目前支持以下视频后端:

  • pyav(默认) - ffmpeg库的Python绑定。
  • video_reader - 这需要安装ffmpeg并从源码构建torchvision。不应该安装任何冲突版本的ffmpeg。目前,这仅在Linux上支持。
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

在C++中使用模型

请参阅example/cpp

免责声明libtorchvision库包含torchvision自定义操作以及大多数C++ torchvision API。这些API不提供任何向后兼容性保证,可能会在不同版本之间发生变化。只有Python API是稳定的并具有向后兼容性保证。因此,如果您需要在C++环境中保持稳定性,最佳选择是通过torchscript导出Python API。

文档

您可以在pytorch网站上找到API文档:https://pytorch.org/vision/stable/index.html

贡献

有关如何提供帮助,请参阅CONTRIBUTING文件。

数据集免责声明

这是一个下载和准备公共数据集的实用库。我们不托管或分发这些数据集,也不保证其质量或公平性,也不声称您有权使用这些数据集。您有责任确定是否有权根据数据集的许可使用该数据集。

如果您是数据集所有者,并希望更新其中的任何部分(描述、引用等),或不希望您的数据集包含在此库中,请通过GitHub问题与我们联系。感谢您对机器学习社区的贡献!

预训练模型许可

本库提供的预训练模型可能有自己的许可或条款和条件,这些许可或条款和条件源于用于训练的数据集。您有责任确定是否有权将这些模型用于您的用例。

更具体地说,SWAG模型是根据CC-BY-NC 4.0许可发布的。有关其他详细信息,请参阅SWAG许可

引用TorchVision

如果您在工作中发现TorchVision有用,请考虑引用以下BibTeX条目:

@software{torchvision2016, title = {TorchVision: PyTorch's Computer Vision library}, author = {TorchVision maintainers and contributors}, year = 2016, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/pytorch/vision}} }

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多