.. image:: https://cdn.rawgit.com/pymc-devs/pymc/main/docs/logos/svg/PyMC_banner.svg :height: 100px :alt: PyMC logo :align: center
|Build Status| |Coverage| |NumFOCUS_badge| |Binder| |Dockerhub| |DOIzenodo| |Conda Downloads|
PyMC (formerly PyMC3) is a Python package for Bayesian statistical modeling focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.
Check out the PyMC overview <https://docs.pymc.io/en/latest/learn/core_notebooks/pymc_overview.html>
, or
one of the many examples <https://www.pymc.io/projects/examples/en/latest/gallery.html>
!
For questions on PyMC, head on over to our PyMC Discourse <https://discourse.pymc.io/>
__ forum.
x ~ N(0,1)
translates to x = Normal('x',0,1)
No U-Turn Sampler <http://www.jmlr.org/papers/v15/hoffman14a.html>
__, allow complex models
with thousands of parameters with little specialized knowledge of
fitting algorithms.ADVI <http://www.jmlr.org/papers/v18/16-107.html>
__
for fast approximate posterior estimation as well as mini-batch ADVI
for large data sets.PyTensor <https://pytensor.readthedocs.io/en/latest/>
__ which provides:
Plant growth can be influenced by multiple factors, and understanding these relationships is crucial for optimizing agricultural practices.
Imagine we conduct an experiment to predict the growth of a plant based on different environmental variables.
.. code-block:: python
import pymc as pm
seed = 42 x_dist = pm.Normal.dist(shape=(100, 3)) x_data = pm.draw(x_dist, random_seed=seed)
coords={ "trial": range(100), "features": ["sunlight hours", "water amount", "soil nitrogen"], }
with pm.Model(coords=coords) as generative_model: x = pm.Data("x", x_data, dims=["trial", "features"])
# Model parameters
betas = pm.Normal("betas", dims="features")
sigma = pm.HalfNormal("sigma")
# Linear model
mu = x @ betas
# Likelihood
# Assuming we measure deviation of each plant from baseline
plant_growth = pm.Normal("plant growth", mu, sigma, dims="trial")
fixed_parameters = { "betas": [5, 20, 2], "sigma": 0.5, } with pm.do(generative_model, fixed_parameters) as synthetic_model: idata = pm.sample_prior_predictive(random_seed=seed) # Sample from prior predictive distribution. synthetic_y = idata.prior["plant growth"].sel(draw=0, chain=0)
with pm.observe(generative_model, {"plant growth": synthetic_y}) as inference_model: idata = pm.sample(random_seed=seed)
summary = pm.stats.summary(idata, var_names=["betas", "sigma"])
print(summary)
From the summary, we can see that the mean of the inferred parameters are very close to the fixed parameters
===================== ====== ===== ======== ========= =========== ========= ========== ========== ======= Params mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat ===================== ====== ===== ======== ========= =========== ========= ========== ========== ======= betas[sunlight hours] 4.972 0.054 4.866 5.066 0.001 0.001 3003 1257 1 betas[water amount] 19.963 0.051 19.872 20.062 0.001 0.001 3112 1658 1 betas[soil nitrogen] 1.994 0.055 1.899 2.107 0.001 0.001 3221 1559 1 sigma 0.511 0.037 0.438 0.575 0.001 0 2945 1522 1 ===================== ====== ===== ======== ========= =========== ========= ========== ========== =======
.. code-block:: python
new_x_data = pm.draw( pm.Normal.dist(shape=(3, 3)), random_seed=seed, ) new_coords = coords | {"trial": [0, 1, 2]}
with inference_model: pm.set_data({"x": new_x_data}, coords=new_coords) pm.sample_posterior_predictive( idata, predictions=True, extend_inferencedata=True, random_seed=seed, )
pm.stats.summary(idata.predictions, kind="stats")
The new data conditioned on inferred parameters would look like:
================ ======== ======= ======== ========= Output mean sd hdi_3% hdi_97% ================ ======== ======= ======== ========= plant growth[0] 14.229 0.515 13.325 15.272 plant growth[1] 24.418 0.511 23.428 25.326 plant growth[2] -6.747 0.511 -7.740 -5.797 ================ ======== ======= ======== =========
.. code-block:: python
with pm.do( inference_model, {inference_model["betas"]: inference_model["betas"] * [0, 1, 1]}, ) as plant_growth_model: new_predictions = pm.sample_posterior_predictive( idata, predictions=True, random_seed=seed, )
pm.stats.summary(new_predictions, kind="stats")
The new data, under the above scenario would look like:
================ ======== ======= ======== ========= Output mean sd hdi_3% hdi_97% ================ ======== ======= ======== ========= plant growth[0] 12.149 0.515 11.193 13.135 plant growth[1] 29.809 0.508 28.832 30.717 plant growth[2] -0.131 0.507 -1.121 0.791 ================ ======== ======= ======== =========
API quickstart guide <https://www.pymc.io/projects/examples/en/latest/introductory/api_quickstart.html>
__PyMC tutorial <https://docs.pymc.io/en/latest/learn/core_notebooks/pymc_overview.html>
__PyMC examples <https://www.pymc.io/projects/examples/en/latest/gallery.html>
__ and the API reference <https://docs.pymc.io/en/stable/api.html>
__Bayesian Analysis with Python <http://bap.com.ar/>
__ (third edition) by Osvaldo Martin: Great introductory book.Probabilistic Programming and Bayesian Methods for Hackers <https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers>
__: Fantastic book with many applied code examples.PyMC port of the book "Doing Bayesian Data Analysis" by John Kruschke <https://github.com/cluhmann/DBDA-python>
__ as well as the first edition <https://github.com/aloctavodia/Doing_bayesian_data_analysis>
__.PyMC port of the book "Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath <https://github.com/pymc-devs/resources/tree/master/Rethinking>
__PyMC port of the book "Bayesian Cognitive Modeling" by Michael Lee and EJ Wagenmakers <https://github.com/pymc-devs/resources/tree/master/BCM>
__: Focused on using Bayesian statistics in cognitive modeling.YouTube playlist <https://www.youtube.com/playlist?list=PL1Ma_1DBbE82OVW8Fz_6Ts1oOeyOAiovy>
__ gathering several talks on PyMC.here <https://discourse.pymc.io/c/pymcon/2020talks/15>
__."Learning Bayesian Statistics" podcast <https://www.learnbayesstats.com/>
__ helps you discover and stay up-to-date with the vast Bayesian community. Bonus: it's hosted by Alex Andorra, one of the PyMC core devs!To install PyMC on your system, follow the instructions on the installation guide <https://www.pymc.io/projects/docs/en/latest/installation.html>
__.
Please choose from the following:
Releases <https://github.com/pymc-devs/pymc/releases>
_.. |DOIpaper| image:: https://img.shields.io/badge/DOI-10.7717%2Fpeerj--cs.1516-blue.svg :target: https://doi.org/10.7717/peerj-cs.1516 .. |DOIzenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4603970.svg :target: https://doi.org/10.5281/zenodo.4603970
We are using discourse.pymc.io <https://discourse.pymc.io/>
__ as our main communication channel.
To ask a question regarding modeling or usage of PyMC we encourage posting to our Discourse forum under the “Questions” Category <https://discourse.pymc.io/c/questions>
. You can also suggest feature in the “Development” Category <https://discourse.pymc.io/c/development>
.
You can also follow us on these social media platforms for updates and other announcements:
LinkedIn @pymc <https://www.linkedin.com/company/pymc/>
__YouTube @PyMCDevelopers <https://www.youtube.com/c/PyMCDevelopers>
__X @pymc_devs <https://x.com/pymc_devs>
__Mastodon @pymc@bayes.club <https://bayes.club/@pymc>
__To report an issue with PyMC please use the issue tracker <https://github.com/pymc-devs/pymc/issues>
__.
Finally, if you need to get in touch for non-technical information about the project, send us an e-mail <info@pymc-devs.org>
__.
Apache License, Version 2.0 <https://github.com/pymc-devs/pymc/blob/main/LICENSE>
__
Bambi <https://github.com/bambinos/bambi>
__: BAyesian Model-Building Interface (BAMBI) in Python.calibr8 <https://calibr8.readthedocs.io>
__: A toolbox for constructing detailed observation models to be used as likelihoods in PyMC.gumbi <https://github.com/JohnGoertz/Gumbi>
__: A high-level interface for building GP models.SunODE <https://github.com/aseyboldt/sunode>
__: Fast ODE solver, much faster than the one that comes with PyMC.pymc-learn <https://github.com/pymc-learn/pymc-learn>
__: Custom PyMC models built on top of pymc3_models/scikit-learn APIExoplanet <https://github.com/dfm/exoplanet>
__: a toolkit for modeling of transit and/or radial velocity observations of exoplanets and other astronomical time series.beat <https://github.com/hvasbath/beat>
__: Bayesian Earthquake Analysis Tool.CausalPy <https://github.com/pymc-labs/CausalPy>
__: A package focussing on causal inference in quasi-experimental settings.Please contact us if your software is not listed here.
See Google Scholar here <https://scholar.google.com/scholar?cites=6357998555684300962>
__ and here <https://scholar.google.com/scholar?cites=6936955228135731011>
__ for a continuously updated list.
See the GitHub contributor page <https://github.com/pymc-devs/pymc/graphs/contributors>
. Also read our Code of Conduct <https://github.com/pymc-devs/pymc/blob/main/CODE_OF_CONDUCT.md>
guidelines for a better contributing experience.
PyMC is a non-profit project under NumFOCUS umbrella. If you want to support PyMC financially, you can donate here <https://numfocus.salsalabs.org/donate-to-pymc3/index.html>
__.
You can get professional consulting support from PyMC Labs <https://www.pymc-labs.io>
__.
|NumFOCUS|
|PyMCLabs|
|Mistplay|
|ODSC|
|contributors|
.. |Binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/pymc-devs/pymc/main?filepath=%2Fdocs%2Fsource%2Fnotebooks .. |Build Status| image:: https://github.com/pymc-devs/pymc/workflows/pytest/badge.svg :target: https://github.com/pymc-devs/pymc/actions .. |Coverage| image:: https://codecov.io/gh/pymc-devs/pymc/branch/main/graph/badge.svg :target: https://codecov.io/gh/pymc-devs/pymc .. |Dockerhub| image:: https://img.shields.io/docker/automated/pymc/pymc.svg :target: https://hub.docker.com/r/pymc/pymc .. |NumFOCUS_badge| image:: https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A :target: http://www.numfocus.org/ .. |NumFOCUS| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/sponsor_numfocus.png?raw=true :target: http://www.numfocus.org/ .. |PyMCLabs| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/sponsor_pymc_labs.png?raw=true :target: https://pymc-labs.io .. |Mistplay| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/sponsor_mistplay.png?raw=true :target: https://www.mistplay.com/ .. |ODSC| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/odsc/sponsor_odsc.png?raw=true :target: https://odsc.com/california/?utm_source=pymc&utm_medium=referral .. |contributors| image:: https://contrib.rocks/image?repo=pymc-devs/pymc :target: https://github.com/pymc-devs/pymc/graphs/contributors .. |Conda Downloads| image:: https://anaconda.org/conda-forge/pymc/badges/downloads.svg :target:
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件 和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容 营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号