pymc

pymc

Python贝叶斯统计建模与概率编程框架

PyMC是一个Python贝叶斯统计建模框架,专注于高级马尔可夫链蒙特卡洛和变分推断算法。它提供直观的模型语法、强大的采样算法和推断功能,可处理复杂模型。PyMC利用PyTensor优化计算,支持缺失值处理,并提供丰富的示例资源。作为一个灵活的概率编程工具,PyMC适用于广泛的统计建模任务。

PyMC贝叶斯统计建模马尔可夫链蒙特卡洛变分推断Python包Github开源项目

.. image:: https://cdn.rawgit.com/pymc-devs/pymc/main/docs/logos/svg/PyMC_banner.svg :height: 100px :alt: PyMC logo :align: center

|Build Status| |Coverage| |NumFOCUS_badge| |Binder| |Dockerhub| |DOIzenodo| |Conda Downloads|

PyMC (formerly PyMC3) is a Python package for Bayesian statistical modeling focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.

Check out the PyMC overview <https://docs.pymc.io/en/latest/learn/core_notebooks/pymc_overview.html>, or one of the many examples <https://www.pymc.io/projects/examples/en/latest/gallery.html>! For questions on PyMC, head on over to our PyMC Discourse <https://discourse.pymc.io/>__ forum.

Features

  • Intuitive model specification syntax, for example, x ~ N(0,1) translates to x = Normal('x',0,1)
  • Powerful sampling algorithms, such as the No U-Turn Sampler <http://www.jmlr.org/papers/v15/hoffman14a.html>__, allow complex models with thousands of parameters with little specialized knowledge of fitting algorithms.
  • Variational inference: ADVI <http://www.jmlr.org/papers/v18/16-107.html>__ for fast approximate posterior estimation as well as mini-batch ADVI for large data sets.
  • Relies on PyTensor <https://pytensor.readthedocs.io/en/latest/>__ which provides:
    • Computation optimization and dynamic C or JAX compilation
    • NumPy broadcasting and advanced indexing
    • Linear algebra operators
    • Simple extensibility
  • Transparent support for missing value imputation

Linear Regression Example

Plant growth can be influenced by multiple factors, and understanding these relationships is crucial for optimizing agricultural practices.

Imagine we conduct an experiment to predict the growth of a plant based on different environmental variables.

.. code-block:: python

import pymc as pm

Taking draws from a normal distribution

seed = 42 x_dist = pm.Normal.dist(shape=(100, 3)) x_data = pm.draw(x_dist, random_seed=seed)

Independent Variables:

Sunlight Hours: Number of hours the plant is exposed to sunlight daily.

Water Amount: Daily water amount given to the plant (in milliliters).

Soil Nitrogen Content: Percentage of nitrogen content in the soil.

Dependent Variable:

Plant Growth (y): Measured as the increase in plant height (in centimeters) over a certain period.

Define coordinate values for all dimensions of the data

coords={ "trial": range(100), "features": ["sunlight hours", "water amount", "soil nitrogen"], }

Define generative model

with pm.Model(coords=coords) as generative_model: x = pm.Data("x", x_data, dims=["trial", "features"])

  # Model parameters
  betas = pm.Normal("betas", dims="features")
  sigma = pm.HalfNormal("sigma")

  # Linear model
  mu = x @ betas

  # Likelihood
  # Assuming we measure deviation of each plant from baseline
  plant_growth = pm.Normal("plant growth", mu, sigma, dims="trial")

Generating data from model by fixing parameters

fixed_parameters = { "betas": [5, 20, 2], "sigma": 0.5, } with pm.do(generative_model, fixed_parameters) as synthetic_model: idata = pm.sample_prior_predictive(random_seed=seed) # Sample from prior predictive distribution. synthetic_y = idata.prior["plant growth"].sel(draw=0, chain=0)

Infer parameters conditioned on observed data

with pm.observe(generative_model, {"plant growth": synthetic_y}) as inference_model: idata = pm.sample(random_seed=seed)

  summary = pm.stats.summary(idata, var_names=["betas", "sigma"])
  print(summary)

From the summary, we can see that the mean of the inferred parameters are very close to the fixed parameters

===================== ====== ===== ======== ========= =========== ========= ========== ========== ======= Params mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat ===================== ====== ===== ======== ========= =========== ========= ========== ========== ======= betas[sunlight hours] 4.972 0.054 4.866 5.066 0.001 0.001 3003 1257 1 betas[water amount] 19.963 0.051 19.872 20.062 0.001 0.001 3112 1658 1 betas[soil nitrogen] 1.994 0.055 1.899 2.107 0.001 0.001 3221 1559 1 sigma 0.511 0.037 0.438 0.575 0.001 0 2945 1522 1 ===================== ====== ===== ======== ========= =========== ========= ========== ========== =======

.. code-block:: python

Simulate new data conditioned on inferred parameters

new_x_data = pm.draw( pm.Normal.dist(shape=(3, 3)), random_seed=seed, ) new_coords = coords | {"trial": [0, 1, 2]}

with inference_model: pm.set_data({"x": new_x_data}, coords=new_coords) pm.sample_posterior_predictive( idata, predictions=True, extend_inferencedata=True, random_seed=seed, )

pm.stats.summary(idata.predictions, kind="stats")

The new data conditioned on inferred parameters would look like:

================ ======== ======= ======== ========= Output mean sd hdi_3% hdi_97% ================ ======== ======= ======== ========= plant growth[0] 14.229 0.515 13.325 15.272 plant growth[1] 24.418 0.511 23.428 25.326 plant growth[2] -6.747 0.511 -7.740 -5.797 ================ ======== ======= ======== =========

.. code-block:: python

Simulate new data, under a scenario where the first beta is zero

with pm.do( inference_model, {inference_model["betas"]: inference_model["betas"] * [0, 1, 1]}, ) as plant_growth_model: new_predictions = pm.sample_posterior_predictive( idata, predictions=True, random_seed=seed, )

pm.stats.summary(new_predictions, kind="stats")

The new data, under the above scenario would look like:

================ ======== ======= ======== ========= Output mean sd hdi_3% hdi_97% ================ ======== ======= ======== ========= plant growth[0] 12.149 0.515 11.193 13.135 plant growth[1] 29.809 0.508 28.832 30.717 plant growth[2] -0.131 0.507 -1.121 0.791 ================ ======== ======= ======== =========

Getting started

If you already know about Bayesian statistics:

  • API quickstart guide <https://www.pymc.io/projects/examples/en/latest/introductory/api_quickstart.html>__
  • The PyMC tutorial <https://docs.pymc.io/en/latest/learn/core_notebooks/pymc_overview.html>__
  • PyMC examples <https://www.pymc.io/projects/examples/en/latest/gallery.html>__ and the API reference <https://docs.pymc.io/en/stable/api.html>__

Learn Bayesian statistics with a book together with PyMC

  • Bayesian Analysis with Python <http://bap.com.ar/>__ (third edition) by Osvaldo Martin: Great introductory book.
  • Probabilistic Programming and Bayesian Methods for Hackers <https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers>__: Fantastic book with many applied code examples.
  • PyMC port of the book "Doing Bayesian Data Analysis" by John Kruschke <https://github.com/cluhmann/DBDA-python>__ as well as the first edition <https://github.com/aloctavodia/Doing_bayesian_data_analysis>__.
  • PyMC port of the book "Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath <https://github.com/pymc-devs/resources/tree/master/Rethinking>__
  • PyMC port of the book "Bayesian Cognitive Modeling" by Michael Lee and EJ Wagenmakers <https://github.com/pymc-devs/resources/tree/master/BCM>__: Focused on using Bayesian statistics in cognitive modeling.

Audio & Video

  • Here is a YouTube playlist <https://www.youtube.com/playlist?list=PL1Ma_1DBbE82OVW8Fz_6Ts1oOeyOAiovy>__ gathering several talks on PyMC.
  • You can also find all the talks given at PyMCon 2020 here <https://discourse.pymc.io/c/pymcon/2020talks/15>__.
  • The "Learning Bayesian Statistics" podcast <https://www.learnbayesstats.com/>__ helps you discover and stay up-to-date with the vast Bayesian community. Bonus: it's hosted by Alex Andorra, one of the PyMC core devs!

Installation

To install PyMC on your system, follow the instructions on the installation guide <https://www.pymc.io/projects/docs/en/latest/installation.html>__.

Citing PyMC

Please choose from the following:

  • |DOIpaper| PyMC: A Modern and Comprehensive Probabilistic Programming Framework in Python, Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, Kochurov M, Kumar R, Lao J, Luhmann CC, Martin OA, Osthege M, Vieira R, Wiecki T, Zinkov R. (2023)
  • |DOIzenodo| A DOI for all versions.
  • DOIs for specific versions are shown on Zenodo and under Releases <https://github.com/pymc-devs/pymc/releases>_

.. |DOIpaper| image:: https://img.shields.io/badge/DOI-10.7717%2Fpeerj--cs.1516-blue.svg :target: https://doi.org/10.7717/peerj-cs.1516 .. |DOIzenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4603970.svg :target: https://doi.org/10.5281/zenodo.4603970

Contact

We are using discourse.pymc.io <https://discourse.pymc.io/>__ as our main communication channel.

To ask a question regarding modeling or usage of PyMC we encourage posting to our Discourse forum under the “Questions” Category <https://discourse.pymc.io/c/questions>. You can also suggest feature in the “Development” Category <https://discourse.pymc.io/c/development>.

You can also follow us on these social media platforms for updates and other announcements:

  • LinkedIn @pymc <https://www.linkedin.com/company/pymc/>__
  • YouTube @PyMCDevelopers <https://www.youtube.com/c/PyMCDevelopers>__
  • X @pymc_devs <https://x.com/pymc_devs>__
  • Mastodon @pymc@bayes.club <https://bayes.club/@pymc>__

To report an issue with PyMC please use the issue tracker <https://github.com/pymc-devs/pymc/issues>__.

Finally, if you need to get in touch for non-technical information about the project, send us an e-mail <info@pymc-devs.org>__.

License

Apache License, Version 2.0 <https://github.com/pymc-devs/pymc/blob/main/LICENSE>__

Software using PyMC

General purpose

  • Bambi <https://github.com/bambinos/bambi>__: BAyesian Model-Building Interface (BAMBI) in Python.
  • calibr8 <https://calibr8.readthedocs.io>__: A toolbox for constructing detailed observation models to be used as likelihoods in PyMC.
  • gumbi <https://github.com/JohnGoertz/Gumbi>__: A high-level interface for building GP models.
  • SunODE <https://github.com/aseyboldt/sunode>__: Fast ODE solver, much faster than the one that comes with PyMC.
  • pymc-learn <https://github.com/pymc-learn/pymc-learn>__: Custom PyMC models built on top of pymc3_models/scikit-learn API

Domain specific

  • Exoplanet <https://github.com/dfm/exoplanet>__: a toolkit for modeling of transit and/or radial velocity observations of exoplanets and other astronomical time series.
  • beat <https://github.com/hvasbath/beat>__: Bayesian Earthquake Analysis Tool.
  • CausalPy <https://github.com/pymc-labs/CausalPy>__: A package focussing on causal inference in quasi-experimental settings.

Please contact us if your software is not listed here.

Papers citing PyMC

See Google Scholar here <https://scholar.google.com/scholar?cites=6357998555684300962>__ and here <https://scholar.google.com/scholar?cites=6936955228135731011>__ for a continuously updated list.

Contributors

See the GitHub contributor page <https://github.com/pymc-devs/pymc/graphs/contributors>. Also read our Code of Conduct <https://github.com/pymc-devs/pymc/blob/main/CODE_OF_CONDUCT.md> guidelines for a better contributing experience.

Support

PyMC is a non-profit project under NumFOCUS umbrella. If you want to support PyMC financially, you can donate here <https://numfocus.salsalabs.org/donate-to-pymc3/index.html>__.

Professional Consulting Support

You can get professional consulting support from PyMC Labs <https://www.pymc-labs.io>__.

Sponsors

|NumFOCUS|

|PyMCLabs|

|Mistplay|

|ODSC|

Thanks to our contributors

|contributors|

.. |Binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/pymc-devs/pymc/main?filepath=%2Fdocs%2Fsource%2Fnotebooks .. |Build Status| image:: https://github.com/pymc-devs/pymc/workflows/pytest/badge.svg :target: https://github.com/pymc-devs/pymc/actions .. |Coverage| image:: https://codecov.io/gh/pymc-devs/pymc/branch/main/graph/badge.svg :target: https://codecov.io/gh/pymc-devs/pymc .. |Dockerhub| image:: https://img.shields.io/docker/automated/pymc/pymc.svg :target: https://hub.docker.com/r/pymc/pymc .. |NumFOCUS_badge| image:: https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A :target: http://www.numfocus.org/ .. |NumFOCUS| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/sponsor_numfocus.png?raw=true :target: http://www.numfocus.org/ .. |PyMCLabs| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/sponsor_pymc_labs.png?raw=true :target: https://pymc-labs.io .. |Mistplay| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/sponsor_mistplay.png?raw=true :target: https://www.mistplay.com/ .. |ODSC| image:: https://github.com/pymc-devs/brand/blob/main/sponsors/sponsor_logos/odsc/sponsor_odsc.png?raw=true :target: https://odsc.com/california/?utm_source=pymc&utm_medium=referral .. |contributors| image:: https://contrib.rocks/image?repo=pymc-devs/pymc :target: https://github.com/pymc-devs/pymc/graphs/contributors .. |Conda Downloads| image:: https://anaconda.org/conda-forge/pymc/badges/downloads.svg :target:

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多