lineax

lineax

基于JAX的线性求解和最小二乘优化库

Lineax是基于JAX开发的线性求解和最小二乘优化库,提供多种算法解决Ax = b问题。该库支持PyTree值矩阵和向量、通用线性算子及结构化矩阵,具备高效的求解器和稳定的梯度计算。Lineax优化了编译和运行性能,支持实值和复值输入,并集成JAX的自动微分、并行计算和硬件加速等功能。

Lineax线性求解JAX最小二乘法Python库Github开源项目
<h1 align='center'>Lineax</h1>

Lineax 是一个用于线性求解和线性最小二乘的 JAX 库。也就是说,Lineax 提供了求解 $Ax = b$ 中 $x$ 的例程。(即使 $A$ 可能是病态或矩形的。)

特性包括:

  • 支持 PyTree 值的矩阵和向量;
  • 用于雅可比矩阵、转置等的通用线性算子;
  • 高效的线性最小二乘(如 QR 求解器);
  • 通过线性最小二乘的数值稳定梯度;
  • 支持结构化(如对称)矩阵;
  • 改进的编译时间;
  • 部分算法的运行时间优化;
  • 支持实值和复值输入;
  • 使用 JAX 的所有优势:自动微分、自动并行、GPU/TPU 支持等。

安装

pip install lineax

需要 Python 3.9+、JAX 0.4.13+ 和 Equinox 0.11.0+。

文档

可在 https://docs.kidger.site/lineax 获取。

快速示例

Lineax 可以使用显式矩阵算子解决最小二乘问题:

import jax.random as jr import lineax as lx matrix_key, vector_key = jr.split(jr.PRNGKey(0)) matrix = jr.normal(matrix_key, (10, 8)) vector = jr.normal(vector_key, (10,)) operator = lx.MatrixLinearOperator(matrix) solution = lx.linear_solve(operator, vector, solver=lx.QR())

或者 Lineax 可以在不具体化矩阵的情况下解决问题,如在这个二次求解中所做的:

import jax import lineax as lx key = jax.random.PRNGKey(0) y = jax.random.normal(key, (10,)) def quadratic_fn(y, args): return jax.numpy.sum((y - 1)**2) gradient_fn = jax.grad(quadratic_fn) hessian = lx.JacobianLinearOperator(gradient_fn, y, tags=lx.positive_semidefinite_tag) solver = lx.CG(rtol=1e-6, atol=1e-6) out = lx.linear_solve(hessian, gradient_fn(y, args=None), solver) minimum = y - out.value

引用

如果您发现这个库在学术工作中有用,请引用:(arXiv 链接

@article{lineax2023, title={Lineax: unified linear solves and linear least-squares in JAX and Equinox}, author={Jason Rader and Terry Lyons and Patrick Kidger}, journal={ AI for science workshop at Neural Information Processing Systems 2023, arXiv:2311.17283 }, year={2023}, }

(也请考虑在 GitHub 上给项目加星。)

另请参阅:JAX 生态系统中的其他库

始终有用
Equinox:神经网络和核心 JAX 中未包含的所有内容!
jaxtyping:数组形状/数据类型的类型注解。

深度学习
Optax:一阶梯度(SGD、Adam 等)优化器。
Orbax:检查点(异步/多主机/多设备)。
Levanter:可扩展且可靠的基础模型(如 LLM)训练。

科学计算
Diffrax:数值微分方程求解器。
Optimistix:寻根、最小化、不动点和最小二乘。
BlackJAX:概率和贝叶斯采样。
sympy2jax:SymPy<->JAX 转换;通过梯度下降训练符号表达式。
PySR:符号回归。(非 JAX 值得一提的项目!)

Awesome JAX
Awesome JAX:更多 JAX 项目的长列表。

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多