Pathway is a Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG.
Pathway comes with an easy-to-use Python API, allowing you to seamlessly integrate your favorite Python ML libraries. Pathway code is versatile and robust: you can use it in both development and production environments, handling both batch and streaming data effectively. The same code can be used for local development, CI/CD tests, running batch jobs, handling stream replays, and processing data streams.
Pathway is powered by a scalable Rust engine based on Differential Dataflow and performs incremental computation. Your Pathway code, despite being written in Python, is run by the Rust engine, enabling multithreading, multiprocessing, and distributed computations. All the pipeline is kept in memory and can be easily deployed with Docker and Kubernetes.
You can install Pathway with pip:
pip install -U pathway
For any questions, you will find the community and team behind the project on Discord.
Ready to see what Pathway can do?
Try one of our easy-to-run examples!
Available in both notebook and docker formats, these ready-to-launch examples can be launched in just a few clicks. Pick one and start your hands-on experience with Pathway today!
With its unified engine for batch and streaming and its full Python compatibility, Pathway makes data processing as easy as possible. It's the ideal solution for a wide range of data processing pipelines, including:
Pathway provides dedicated LLM tooling to build LLM and RAG pipelines. Wrappers for most common LLM services and utilities are included, making working with LLMs and RAGs pipelines incredibly easy. Check out our LLM xpack documentation.
Don't hesitate to try one of our runnable examples featuring LLM tooling. You can find such examples here.
Pathway requires Python 3.10 or above.
You can install the current release of Pathway using pip:
$ pip install -U pathway
⚠️ Pathway is available on MacOS and Linux. Users of other systems should run Pathway on a Virtual Machine.
import pathway as pw # Define the schema of your data (Optional) class InputSchema(pw.Schema): value: int # Connect to your data using connectors input_table = pw.io.csv.read( "./input/", schema=InputSchema ) #Define your operations on the data filtered_table = input_table.filter(input_table.value>=0) result_table = filtered_table.reduce( sum_value = pw.reducers.sum(filtered_table.value) ) # Load your results to external systems pw.io.jsonlines.write(result_table, "output.jsonl") # Run the computation pw.run()
Run Pathway in Google Colab.
You can find more examples here.
To use Pathway, you only need to import it:
import pathway as pw
Now, you can easily create your processing pipeline, and let Pathway handle the updates. Once your pipeline is created, you can launch the computation on streaming data with a one-line command:
pw.run()
You can then run your Pathway project (say, main.py) just like a normal Python script: $ python main.py.
Pathway comes with a monitoring dashboard that allows you to keep track of the number of messages sent by each connector and the latency of the system. The dashboard also includes log messages.
Alternatively, you can use the pathway'ish version:
$ pathway spawn python main.py
Pathway natively supports multithreading. To launch your application with 3 threads, you can do as follows:
$ pathway spawn --threads 3 python main.py
To jumpstart a Pathway project, you can use our cookiecutter template.
You can easily run Pathway using docker.
You can use the Pathway docker image, using a Dockerfile:
FROM pathwaycom/pathway:latest WORKDIR /app COPY requirements.txt ./ RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD [ "python", "./your-script.py" ]
You can then build and run the Docker image:
docker build -t my-pathway-app . docker run -it --rm --name my-pathway-app my-pathway-app
When dealing with single-file projects, creating a full-fledged Dockerfile
might seem unnecessary. In such scenarios, you can execute a
Python script directly using the Pathway Docker image. For example:
docker run -it --rm --name my-pathway-app -v "$PWD":/app pathwaycom/pathway:latest python my-pathway-app.py
You can also use a standard Python image and install Pathway using pip with a Dockerfile:
FROM python:3.10 RUN pip install -U pathway COPY ./pathway-script.py pathway-script.py CMD ["python", "-u", "pathway-script.py"]
Docker containers are ideally suited for deployment on the cloud with Kubernetes. If you want to scale your Pathway application, you may be interested in our Pathway for Enterprise. Pathway for Enterprise is specially tailored towards end-to-end data processing and real time intelligent analytics. It scales using distributed computing on the cloud and supports distributed Kubernetes deployment, with external persistence setup.
You can easily deploy Pathway using services like Render: see how to deploy Pathway in a few clicks.
If you are interested, don't hesitate to contact us to learn more.
Pathway is made to outperform state-of-the-art technologies designed for streaming and batch data processing tasks, including: Flink, Spark, and Kafka Streaming. It also makes it possible to implement a lot of algorithms/UDF's in streaming mode which are not readily supported by other streaming frameworks (especially: temporal joins, iterative graph algorithms, machine learning routines).
If you are curious, here are some benchmarks to play with.
<img src="https://github.com/pathwaycom/pathway-benchmarks/raw/main/images/bm-wordcount-lineplot.png" width="1326" alt="WordCount Graph"/>The entire documentation of Pathway is available at pathway.com/developers/, including the API Docs.
If you have any question, don't hesitate to open an issue on GitHub, join us on Discord, or send us an email at contact@pathway.com.
Pathway is distributed on a BSL 1.1 License which allows for unlimited non-commercial use, as well as use of the Pathway package for most commercial purposes, free of charge. Code in this repository automatically converts to Open Source (Apache 2.0 License) after 4 years. Some public repos which are complementary to this one (examples, libraries, connectors, etc.) are licensed as Open Source, under the MIT license.
If you develop a library or connector which you would like to integrate with this repo, we suggest releasing it first as a separate repo on a MIT/Apache 2.0 license.
For all concerns regarding core Pathway functionalities, Issues are encouraged. For further information, don't hesitate to engage with Pathway's [Discord


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国 内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印 视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。