HistoSSLscaling

HistoSSLscaling

病理组织图像自监督学习新方法

HistoSSLscaling项目开发了基于掩码图像建模的自监督学习方法,用于病理组织图像分析。该项目的Phikon模型在4000万张全癌种病理切片上预训练,在多项下游任务中表现出色。项目提供了预训练模型、代码和数据集特征,为计算病理学研究提供支持。

自监督学习组织病理学掩码图像建模ViTPhikonGithub开源项目
<div align="center"> <h1>Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling</h1> </div> <details> <summary> <b>Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling</b>, MedRxiv, July 2023.

[MedRxiv] [Project page] [Paper]

</summary>

Filiot, A., Ghermi, R., Olivier, A., Jacob, P., Fidon, L., Kain, A. M., Saillard, C., & Schiratti, J.-B. (2023). Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling. MedRxiv.

@article{Filiot2023scalingwithMIM, author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti}, title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling}, elocation-id = {2023.07.21.23292757}, year = {2023}, doi = {10.1101/2023.07.21.23292757}, publisher = {Cold Spring Harbor Laboratory Press}, url = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757v2}, eprint = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757v2.full.pdf}, journal = {medRxiv} }
</details>

Update :tada: Phikon release on Hugging Face :tada:

We released our Phikon model on Hugging Face. Check out our community blog post ! We also provide a Colab notebook to perform weakly-supervised learning on Camelyon16 and fine-tuning with LoRA on NCT-CRC-HE using Phikon.

Here is a code snippet to perform feature extraction using Phikon.

from PIL import Image import torch from transformers import AutoImageProcessor, ViTModel # load an image image = Image.open("assets/example.tif") # load phikon image_processor = AutoImageProcessor.from_pretrained("owkin/phikon") model = ViTModel.from_pretrained("owkin/phikon", add_pooling_layer=False) # process the image inputs = image_processor(image, return_tensors="pt") # get the features with torch.no_grad(): outputs = model(**inputs) features = outputs.last_hidden_state[:, 0, :] # (1, 768) shape

Official PyTorch Implementation and pre-trained models for Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling. This minimalist repository aims to:

  • Publicly release the weights of our Vision Transformer Base (ViT-B) model Phikon pre-trained with iBOT on 40M pan-cancer histology tiles from TCGA. Phikon achieves state-of-the-art performance on a large variety of downstream tasks compared to other SSL frameworks available in the literature.

⚠️ Addendum :warning:

From 09.01.2023 to 10.30.2023, this repository stated using the student, please use the teacher backbone instead.

# feature extraction snippet with `rl_benchmarks` repository from PIL import Image from rl_benchmarks.models import iBOTViT # instantiate iBOT ViT-B Pancancer model, aka Phikon # /!\ please use the "teacher" encoder which produces better results ! weights_path = "/<your_root_dir>/weights/ibot_vit_base_pancan.pth"> ibot_base_pancancer = iBOTViT(architecture="vit_base_pancan", encoder="teacher", weights_path=weights_path) # load an image and transform it into a normalized tensor image = Image.open("assets/example.tif") # (224, 224, 3), uint8 tensor = ibot_base_pancancer.transform(image) # (3, 224, 224), torch.float32 batch = tensor.unsqueeze(0) # (1, 3, 224, 224), torch.float32 # compute the 768-d features features = ibot_base_pancancer(batch).detach().cpu().numpy() assert features.shape == (1, 768)
  • Publicly release the histology features of our ViT-based iBOT models (iBOT[ViT-S]COAD, iBOT[ViT-B]COAD, iBOT[ViT-B]PanCancer, iBOT[ViT-L]COAD) for i) 11 TCGA cohorts and Camelyon16 slides datasets; and ii) NCT-CRC and Camelyon17-Wilds patches datasets.
  • Reproduce the results from our publication, including: features extraction and clinical data processing, cross-validation experiments, results generation.

Abstract

<details> <summary> Read full abstract from MedRxiv.

main_figure

</summary> Computational pathology is revolutionizing the field of pathology by integrating advanced computer vision and machine learning technologies into diagnostic workflows. Recently, Self-Supervised Learning (SSL) has emerged as a promising solution to learn representations from histology patches, leveraging large volumes of unannotated whole slide images whole slide images (WSI). In particular, Masked Image Modeling (MIM) showed remarkable results and robustness over purely contrastive learning methods. In this work, we explore the application of MIM to histology using iBOT, a self-supervised transformer-based framework. Through a wide range of downstream tasks over seven cancer indications, we provide recommendations on the pre-training of large models for histology data using MIM. First, we demonstrate that in-domain pre-training with iBOT outperforms both ImageNet pre-training and a model pre-trained with a purely contrastive learning objective, MoCo V2. Second, we show that Vision Transformers (ViT), when scaled appropriately, have the capability to learn pan-cancer representations that benefit a large variety of downstream tasks. Finally, our iBOT ViT-Base model, pre-trained on more than 40 million histology images from 16 different cancer types, achieves state-of-the-art performance in most weakly-supervised WSI classification tasks compared to other SSL frameworks. Our code, models and features are publicly available at https://github.com/owkin/HistoSSLscaling. </details>

Data structure

Download

You can download the data necessary to use the present code and reproduce our results here:

Please create weights, raw and preprocessed folders containing the content of the different downloads. This step may take time depending on your wifi bandwidth (folder takes 1.2 To). You can use rclone to download the folder from a remote machine (preferred in a tmux session).

Description

The bucket contains three main folders: a weights, raw and preprocessed folders. The weights folder contains weights for iBOT[ViT-B]PanCancer (our best ViT-B iBOT model). Other models from the literature can be retrieved from the corresponding Github repositories:

weights/
└── ibot_vit_base_pancan.pth          # Ours

The raw folder contains two subfolders for slide-level and tile-level downstream task.

  • Slide-level: each cohort contains 2 folders, clinical and slides. We provide clinical data but not raw slides. No modification was performed on the folders architectures and files names of raw slides and patches compared to the original source (i.e. TCGA, Camelyon16, NCT-CRC and Camelyon17-WILDS).
  • Tile-level: each cohort contains 2 folders, clinical and patches. We only provide clinical data (i.e. labels), not patches datasets.

[!WARNING] We don't provide raw slides or patches (slides, patches folders are empty). You can download raw slides or patches here:

Once you downloaded the data, please follow the same folders architecture as indicated below (without applying modifications on folders and files names compared to original download).

raw/
├── slides_classification               # slides classification tasks
===============================================================================
│   ├── CAMELYON16_FULL                 # cohort
│   │   ├── clinical                    # clinical data (for labels)
│   │   │   ├── test_clinical_data.csv
│   │   │   └── train_clinical_data.csv
│   │   └── slides                      # raw slides (not provided)
│   │        ├── Normal_001.tif
│   │        ├── Normal_002.tif...
│   └── TCGA
│       ├── tcga_statistics.pk          # For each cohort and label, list (n_patients, n_slides, labels_distribution)
│       ├── clinical                    # for TCGA, clinical data is divided into subfolders
│       │   ├── hrd
│       │   │   ├── hrd_labels_tcga_brca.csv
│       │   │   └── hrd_labels_tcga_ov.csv
│       │   ├── msi
│       │   │   ├── msi_labels_tcga_coad.csv
│       │   │   ├── msi_labels_tcga_read.csv...
│       │   ├── subtypes
│       │   │   ├── brca_tcga_pan_can_atlas_2018_clinical_data.tsv.gz
│       │   │   ├── coad_tcga_pan_can_atlas_2018_clinical_data.tsv.gz...
│       │   └── survival
│       │       ├── survival_labels_tcga_brca.csv
│       │       ├── survival_labels_tcga_coad.csv...
│       └── slides
│           └── parafine
│               ├── TCGA_BRCA
│               │   ├── 03627311-e413-4218-b836-177abdfc3911
│               │   │   └── TCGA-XF-AAN7-01Z-00-DX1.B8EDF045-604C-48CB-8E54-A60564CAE2AD.svs
...

└── tiles_classification                # tiles classification tasks
===============================================================================
    ├── CAMELYON17-WILDS_FULL           # cohort
    │   ├── clinical                    # clinical data (for labels)
    │   │    └── metadata.csv
    │   └── patches                     # patches (not provided)
    │        ├── patient_004_node_4...
    │        │   ├── patch_patient_004_node_4_x_10016_y_16704.png...
    └── NCT-CRC_FULL
        ├── labels                      # here the labels are set using the folders architecture
        │   └── dict_labels.pkl
        └── patches
            ├── NCT-CRC-VAL-HE-7K
            │    ├── ADI...
            │    │    ├── ADI-TCGA-AAICEQFN.tif...
            └── NCT-CRC-HE-100K-NONORM
                 ├── ADI...
                 │    ├── ADI-AAAFLCLY.tif...

The preprocessed folder contains two subfolders for slide-level and tile-level downstream tasks.

  • Slide-level: for each feature extractor and dataset, we provide coordinates and features. Coordinates are provided as (N_tiles_slide, 3) numpy arrays where the 3 first columns rows correspond to (tile_level, x_coordinate, y_coordinate). Features are provided as (N_tiles_slide, 3+d) numpy arrays, the d last columns being the model's features (3 first are the previous coordinates). Coordinates are meant to extract the same tiles as done in our publication but are not needed for downstream experiments (only features are needed). Note that coordinates are divided into coords_224, coords_256 and coords_4096, corresponding to 224 x 224 tiles (iBOT, CTransPath and ResNet models), 256 x 256 (Dino models) and 4096 x 4096 (HIPT) tiles, respectively.

[!NOTE] We provide all matter tiles for each slide. All tiles were extracted at 0.5 micrometers / pixel (20x magnification) except for CTransPath (mpp = 1.0 following the authors recommendation).

[!WARNING] The tile_level is computed with openslide.deepzoom.DeepZoomGenerator through the following schematic syntax:

from openslide import open_slide from openslide.deepzoom import DeepZoomGenerator slide = open_slide("<slide_path>") dzg = DeepZoomGenerator(slide, tile_size=224, overlap=0) tile = dzg.get_tile(level=17, address=(8, 10)) # this corresponds to coordinates (17, 8, 10) in the coordinates we provide for the given slide
  • Tile-level: for each feature extractor and dataset, we provide patches ids and features. Features are (N_patches_dataset, d) numpy arrays and ids take the form of (N_patches_dataset, 1) string numpy array.

Here is a description of the different features and coordinates we provide in the preprocessed folder.

preprocessed/                         # preprocessed data (coords, features)
===============================================================================
├── slides_classification             # slides classification tasks
│   ├── coords
│   │   ├── coords_224                # coordinates for 224 x 224 tiles
│   │   │   ├── CAMELYON16_FULL       # cohort 
│   │   │   │   ├── Normal_001.tif    # slide_id
│   │   │   │       └── coords.npy    # coordinates array (N_tiles_slide, 3)
...
│   │   │   ├── TCGA
│   │   │   │   ├── TCGA_BRCA
│   │   │   │   │   ├── TCGA-3C-AALI-01Z-00-DX1.F6E9A5DF-D8FB-45CF-B4BD-C6B76294C291.svs
│   │   │   │   │       └── coords.npy
...
│   │   ├── coords_256                # coordinates for 256 x 256 tiles
│   │   └── coords_4096               # coordinates for 4096 x 4096 tiles

...
│   └── features                      # features
│       ├── iBOTViTBasePANCAN         # feature extractor
│       │   ├── CAMELYON16_FULL       # cohort
│       │   │   ├── Normal_001.tif    # slide_id
│       │   │       └── features.npy  # features array (N_tiles_slide, 3+d)
...
│       │   ├── TCGA
│       │   │   ├── TCGA_BRCA
│       │   │   │   ├── TCGA-3C-AALI-01Z-00-DX1.F6E9A5DF-D8FB-45CF-B4BD-C6B76294C291.svs
│       │   │   │       └── features.npy
...
│       ├── MoCoWideResNetCOAD        # same structure applies for all extractors
│       ├── ResNet50
│       ├── iBOTViTBaseCOAD
│       ├── iBOTViTBasePANCAN
│       ├── iBOTViTLargeCOAD
│       ├── iBOTViTSmallCOAD
...
/!\ If you wish to extract features for

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多