HistoSSLscaling

HistoSSLscaling

病理组织图像自监督学习新方法

HistoSSLscaling项目开发了基于掩码图像建模的自监督学习方法,用于病理组织图像分析。该项目的Phikon模型在4000万张全癌种病理切片上预训练,在多项下游任务中表现出色。项目提供了预训练模型、代码和数据集特征,为计算病理学研究提供支持。

自监督学习组织病理学掩码图像建模ViTPhikonGithub开源项目
<div align="center"> <h1>Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling</h1> </div> <details> <summary> <b>Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling</b>, MedRxiv, July 2023.

[MedRxiv] [Project page] [Paper]

</summary>

Filiot, A., Ghermi, R., Olivier, A., Jacob, P., Fidon, L., Kain, A. M., Saillard, C., & Schiratti, J.-B. (2023). Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling. MedRxiv.

@article{Filiot2023scalingwithMIM, author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti}, title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling}, elocation-id = {2023.07.21.23292757}, year = {2023}, doi = {10.1101/2023.07.21.23292757}, publisher = {Cold Spring Harbor Laboratory Press}, url = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757v2}, eprint = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757v2.full.pdf}, journal = {medRxiv} }
</details>

Update :tada: Phikon release on Hugging Face :tada:

We released our Phikon model on Hugging Face. Check out our community blog post ! We also provide a Colab notebook to perform weakly-supervised learning on Camelyon16 and fine-tuning with LoRA on NCT-CRC-HE using Phikon.

Here is a code snippet to perform feature extraction using Phikon.

from PIL import Image import torch from transformers import AutoImageProcessor, ViTModel # load an image image = Image.open("assets/example.tif") # load phikon image_processor = AutoImageProcessor.from_pretrained("owkin/phikon") model = ViTModel.from_pretrained("owkin/phikon", add_pooling_layer=False) # process the image inputs = image_processor(image, return_tensors="pt") # get the features with torch.no_grad(): outputs = model(**inputs) features = outputs.last_hidden_state[:, 0, :] # (1, 768) shape

Official PyTorch Implementation and pre-trained models for Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling. This minimalist repository aims to:

  • Publicly release the weights of our Vision Transformer Base (ViT-B) model Phikon pre-trained with iBOT on 40M pan-cancer histology tiles from TCGA. Phikon achieves state-of-the-art performance on a large variety of downstream tasks compared to other SSL frameworks available in the literature.

⚠️ Addendum :warning:

From 09.01.2023 to 10.30.2023, this repository stated using the student, please use the teacher backbone instead.

# feature extraction snippet with `rl_benchmarks` repository from PIL import Image from rl_benchmarks.models import iBOTViT # instantiate iBOT ViT-B Pancancer model, aka Phikon # /!\ please use the "teacher" encoder which produces better results ! weights_path = "/<your_root_dir>/weights/ibot_vit_base_pancan.pth"> ibot_base_pancancer = iBOTViT(architecture="vit_base_pancan", encoder="teacher", weights_path=weights_path) # load an image and transform it into a normalized tensor image = Image.open("assets/example.tif") # (224, 224, 3), uint8 tensor = ibot_base_pancancer.transform(image) # (3, 224, 224), torch.float32 batch = tensor.unsqueeze(0) # (1, 3, 224, 224), torch.float32 # compute the 768-d features features = ibot_base_pancancer(batch).detach().cpu().numpy() assert features.shape == (1, 768)
  • Publicly release the histology features of our ViT-based iBOT models (iBOT[ViT-S]COAD, iBOT[ViT-B]COAD, iBOT[ViT-B]PanCancer, iBOT[ViT-L]COAD) for i) 11 TCGA cohorts and Camelyon16 slides datasets; and ii) NCT-CRC and Camelyon17-Wilds patches datasets.
  • Reproduce the results from our publication, including: features extraction and clinical data processing, cross-validation experiments, results generation.

Abstract

<details> <summary> Read full abstract from MedRxiv.

main_figure

</summary> Computational pathology is revolutionizing the field of pathology by integrating advanced computer vision and machine learning technologies into diagnostic workflows. Recently, Self-Supervised Learning (SSL) has emerged as a promising solution to learn representations from histology patches, leveraging large volumes of unannotated whole slide images whole slide images (WSI). In particular, Masked Image Modeling (MIM) showed remarkable results and robustness over purely contrastive learning methods. In this work, we explore the application of MIM to histology using iBOT, a self-supervised transformer-based framework. Through a wide range of downstream tasks over seven cancer indications, we provide recommendations on the pre-training of large models for histology data using MIM. First, we demonstrate that in-domain pre-training with iBOT outperforms both ImageNet pre-training and a model pre-trained with a purely contrastive learning objective, MoCo V2. Second, we show that Vision Transformers (ViT), when scaled appropriately, have the capability to learn pan-cancer representations that benefit a large variety of downstream tasks. Finally, our iBOT ViT-Base model, pre-trained on more than 40 million histology images from 16 different cancer types, achieves state-of-the-art performance in most weakly-supervised WSI classification tasks compared to other SSL frameworks. Our code, models and features are publicly available at https://github.com/owkin/HistoSSLscaling. </details>

Data structure

Download

You can download the data necessary to use the present code and reproduce our results here:

Please create weights, raw and preprocessed folders containing the content of the different downloads. This step may take time depending on your wifi bandwidth (folder takes 1.2 To). You can use rclone to download the folder from a remote machine (preferred in a tmux session).

Description

The bucket contains three main folders: a weights, raw and preprocessed folders. The weights folder contains weights for iBOT[ViT-B]PanCancer (our best ViT-B iBOT model). Other models from the literature can be retrieved from the corresponding Github repositories:

weights/
└── ibot_vit_base_pancan.pth          # Ours

The raw folder contains two subfolders for slide-level and tile-level downstream task.

  • Slide-level: each cohort contains 2 folders, clinical and slides. We provide clinical data but not raw slides. No modification was performed on the folders architectures and files names of raw slides and patches compared to the original source (i.e. TCGA, Camelyon16, NCT-CRC and Camelyon17-WILDS).
  • Tile-level: each cohort contains 2 folders, clinical and patches. We only provide clinical data (i.e. labels), not patches datasets.

[!WARNING] We don't provide raw slides or patches (slides, patches folders are empty). You can download raw slides or patches here:

Once you downloaded the data, please follow the same folders architecture as indicated below (without applying modifications on folders and files names compared to original download).

raw/
├── slides_classification               # slides classification tasks
===============================================================================
│   ├── CAMELYON16_FULL                 # cohort
│   │   ├── clinical                    # clinical data (for labels)
│   │   │   ├── test_clinical_data.csv
│   │   │   └── train_clinical_data.csv
│   │   └── slides                      # raw slides (not provided)
│   │        ├── Normal_001.tif
│   │        ├── Normal_002.tif...
│   └── TCGA
│       ├── tcga_statistics.pk          # For each cohort and label, list (n_patients, n_slides, labels_distribution)
│       ├── clinical                    # for TCGA, clinical data is divided into subfolders
│       │   ├── hrd
│       │   │   ├── hrd_labels_tcga_brca.csv
│       │   │   └── hrd_labels_tcga_ov.csv
│       │   ├── msi
│       │   │   ├── msi_labels_tcga_coad.csv
│       │   │   ├── msi_labels_tcga_read.csv...
│       │   ├── subtypes
│       │   │   ├── brca_tcga_pan_can_atlas_2018_clinical_data.tsv.gz
│       │   │   ├── coad_tcga_pan_can_atlas_2018_clinical_data.tsv.gz...
│       │   └── survival
│       │       ├── survival_labels_tcga_brca.csv
│       │       ├── survival_labels_tcga_coad.csv...
│       └── slides
│           └── parafine
│               ├── TCGA_BRCA
│               │   ├── 03627311-e413-4218-b836-177abdfc3911
│               │   │   └── TCGA-XF-AAN7-01Z-00-DX1.B8EDF045-604C-48CB-8E54-A60564CAE2AD.svs
...

└── tiles_classification                # tiles classification tasks
===============================================================================
    ├── CAMELYON17-WILDS_FULL           # cohort
    │   ├── clinical                    # clinical data (for labels)
    │   │    └── metadata.csv
    │   └── patches                     # patches (not provided)
    │        ├── patient_004_node_4...
    │        │   ├── patch_patient_004_node_4_x_10016_y_16704.png...
    └── NCT-CRC_FULL
        ├── labels                      # here the labels are set using the folders architecture
        │   └── dict_labels.pkl
        └── patches
            ├── NCT-CRC-VAL-HE-7K
            │    ├── ADI...
            │    │    ├── ADI-TCGA-AAICEQFN.tif...
            └── NCT-CRC-HE-100K-NONORM
                 ├── ADI...
                 │    ├── ADI-AAAFLCLY.tif...

The preprocessed folder contains two subfolders for slide-level and tile-level downstream tasks.

  • Slide-level: for each feature extractor and dataset, we provide coordinates and features. Coordinates are provided as (N_tiles_slide, 3) numpy arrays where the 3 first columns rows correspond to (tile_level, x_coordinate, y_coordinate). Features are provided as (N_tiles_slide, 3+d) numpy arrays, the d last columns being the model's features (3 first are the previous coordinates). Coordinates are meant to extract the same tiles as done in our publication but are not needed for downstream experiments (only features are needed). Note that coordinates are divided into coords_224, coords_256 and coords_4096, corresponding to 224 x 224 tiles (iBOT, CTransPath and ResNet models), 256 x 256 (Dino models) and 4096 x 4096 (HIPT) tiles, respectively.

[!NOTE] We provide all matter tiles for each slide. All tiles were extracted at 0.5 micrometers / pixel (20x magnification) except for CTransPath (mpp = 1.0 following the authors recommendation).

[!WARNING] The tile_level is computed with openslide.deepzoom.DeepZoomGenerator through the following schematic syntax:

from openslide import open_slide from openslide.deepzoom import DeepZoomGenerator slide = open_slide("<slide_path>") dzg = DeepZoomGenerator(slide, tile_size=224, overlap=0) tile = dzg.get_tile(level=17, address=(8, 10)) # this corresponds to coordinates (17, 8, 10) in the coordinates we provide for the given slide
  • Tile-level: for each feature extractor and dataset, we provide patches ids and features. Features are (N_patches_dataset, d) numpy arrays and ids take the form of (N_patches_dataset, 1) string numpy array.

Here is a description of the different features and coordinates we provide in the preprocessed folder.

preprocessed/                         # preprocessed data (coords, features)
===============================================================================
├── slides_classification             # slides classification tasks
│   ├── coords
│   │   ├── coords_224                # coordinates for 224 x 224 tiles
│   │   │   ├── CAMELYON16_FULL       # cohort 
│   │   │   │   ├── Normal_001.tif    # slide_id
│   │   │   │       └── coords.npy    # coordinates array (N_tiles_slide, 3)
...
│   │   │   ├── TCGA
│   │   │   │   ├── TCGA_BRCA
│   │   │   │   │   ├── TCGA-3C-AALI-01Z-00-DX1.F6E9A5DF-D8FB-45CF-B4BD-C6B76294C291.svs
│   │   │   │   │       └── coords.npy
...
│   │   ├── coords_256                # coordinates for 256 x 256 tiles
│   │   └── coords_4096               # coordinates for 4096 x 4096 tiles

...
│   └── features                      # features
│       ├── iBOTViTBasePANCAN         # feature extractor
│       │   ├── CAMELYON16_FULL       # cohort
│       │   │   ├── Normal_001.tif    # slide_id
│       │   │       └── features.npy  # features array (N_tiles_slide, 3+d)
...
│       │   ├── TCGA
│       │   │   ├── TCGA_BRCA
│       │   │   │   ├── TCGA-3C-AALI-01Z-00-DX1.F6E9A5DF-D8FB-45CF-B4BD-C6B76294C291.svs
│       │   │   │       └── features.npy
...
│       ├── MoCoWideResNetCOAD        # same structure applies for all extractors
│       ├── ResNet50
│       ├── iBOTViTBaseCOAD
│       ├── iBOTViTBasePANCAN
│       ├── iBOTViTLargeCOAD
│       ├── iBOTViTSmallCOAD
...
/!\ If you wish to extract features for

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多