Updated on 2024.06.12
Here is a collection of research papers for Exploration methods in Reinforcement Learning (ERL). The repository will be continuously updated to track the frontier of ERL. Welcome to follow and star!
The balance of exploration and exploitation is one of the most central problems in reinforcement learning. In order to give readers an intuitive feeling for exploration, we provide a visualization of a typical hard exploration environment in MiniGrid below. In this task, a series of actions to achieve the goal often require dozens or even hundreds of steps, in which the agent needs to fully explore different state-action spaces in order to learn the skills required to achieve the goal.
In general, we can divide reinforcement learning process into two phases: collect phase and train phase. In the collect phase, the agent chooses actions based on the current policy and then interacts with the environment to collect useful experience. In the train phase, the agent uses the collected experience to update the current policy to obtain a better performing policy.
According to the phase the exploration component is explicitly applied, we simply divide the methods in Exploration RL into two main categories: Augmented Collecting Strategy, Augmented Training Strategy:
Augmented Collecting Strategy represents a variety of different exploration strategies commonly used in the collect phase, which we further divide into four categories:
Action Selection PerturbationAction Selection GuidanceState Selection GuidanceParameter Space PerturbationAugmented Training Strategy represents a variety of different exploration strategies commonly used in the train phase, which we further divide into seven categories:
Count BasedPrediction BasedInformation Theory BasedEntropy AugmentedBayesian Posterior BasedGoal Based(Expert) Demo Data<center> <figure> <img style="border-radius: 0.3125em; box-shadow: 0 2px 4px 0 rgba(34,36,38,.12),0 2px 10px 0 rgba(34,36,38,.08);" src="./assets/erl_taxonomy.png" width=100% height=100%> <br> <figcaption align = "center"><b>A non-exhaustive, but useful taxonomy of methods in Exploration RL. We provide some example methods for each of the different categories, shown in blue area above. </b></figcaption> </figure> </center>Note that there may be overlap between these categories, and an algorithm may belong to several of them. For other detailed survey on exploration methods in RL, you can refer to Tianpei Yang et al and Susan Amin et al.
Here are the links to the papers that appeared in the taxonomy:
</details>[1] Go-Explore: Adrien Ecoffet et al, 2021
[2] NoisyNet, Meire Fortunato et al, 2018
[3] DQN-PixelCNN: Marc G. Bellemare et al, 2016
[4] #Exploration Haoran Tang et al, 2017
[5] EX2: Justin Fu et al, 2017
[6] ICM: Deepak Pathak et al, 2018
[7] RND: Yuri Burda et al, 2018
[8] NGU: Adrià Puigdomènech Badia et al, 2020
[9] Agent57: Adrià Puigdomènech Badia et al, 2020
[10] VIME: Rein Houthooft et al, 2016
[11] EMI: Wang et al, 2019
[12] DIYAN: Benjamin Eysenbach et al, 2019
[13] SAC: Tuomas Haarnoja et al, 2018
[14] BootstrappedDQN: Ian Osband et al, 2016
[15] PSRL: Ian Osband et al, 2013
[16] HER Marcin Andrychowicz et al, 2017
[17] DQfD: Todd Hester et al, 2018
[18] R2D3: Caglar Gulcehre et al, 2019
format:
- [title](paper link) (presentation type, openreview score [if the score is public])
- author1, author2, author3, ...
- Key: key problems and insights
- ExpEnv: experiment environments
Unlocking the Power of Representations in Long-term Novelty-based Exploration
A Theoretical Explanation of Deep RL Performance in Stochastic Environments
DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
Text2Reward: Reward Shaping with Language Models for Reinforcement Learning
Pre-Training Goal-based Models for Sample-Efficient Reinforcement Learning
Efficient Episodic Memory Utilization of Cooperative Multi-Agent Reinforcement Learning
Simple Hierarchical Planning with Diffusion
Sample Efficient Myopic Exploration Through Multitask Reinforcement Learning with Diverse Tasks
PAE: Reinforcement Learning from External Knowledge for Efficient Exploration
In-context Exploration-Exploitation for Reinforcement Learning
Learning to Act without Actions
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration
On the Importance of Exploration for Generalization in Reinforcement Learning
Monte Carlo Tree Search with Boltzmann Exploration
Breadcrumbs to the Goal: Supervised Goal Selection from Human-in-the-Loop Feedback
MIMEx: Intrinsic Rewards from Masked Input Modeling
Accelerating Exploration with Unlabeled Prior Data
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with ε-Greedy Exploration
Pitfall of Optimism: Distributional Reinforcement Learning by Randomizing Risk Criterion
CQM: Curriculum Reinforcement Learning with a Quantized World Model
Safe Exploration in Reinforcement Learning: A Generalized Formulation and Algorithms
Successor-Predecessor Intrinsic Exploration


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号