chatgpt-retrieval-plugin

chatgpt-retrieval-plugin

增强AI模型的文档访问和语义搜索能力的独立的检索后端

ChatGPT检索插件是一个独立的检索后端,为AI模型提供语义搜索和文档检索功能。它利用OpenAI的嵌入模型和向量数据库技术,可处理多种数据源的文档,支持元数据过滤,并提供灵活的部署选项。该插件可与ChatGPT自定义GPT、函数调用或插件模型集成,使开发者能够构建高度定制化的文档访问系统,适用于个人用户和企业内部知识管理。

ChatGPTRetrieval Plugin向量数据库自然语言查询文档嵌入Github开源项目

ChatGPT Retrieval Plugin

Build Custom GPTs with a Retrieval Plugin backend to give ChatGPT access to personal documents. Example Custom GPT Screenshot

Introduction

The ChatGPT Retrieval Plugin repository provides a flexible solution for semantic search and retrieval of personal or organizational documents using natural language queries. It is a standalone retrieval backend, and can be used with ChatGPT custom GPTs, function calling with the chat completions or assistants APIs, or with the ChatGPT plugins model (deprecated). ChatGPT and the Assistants API both natively support retrieval from uploaded files, so you should use the Retrieval Plugin as a backend only if you want more granular control of your retrieval system (e.g. document text chunk length, embedding model / size, etc.).

The repository is organized into several directories:

DirectoryDescription
datastoreContains the core logic for storing and querying document embeddings using various vector database providers.
docsIncludes documentation for setting up and using each vector database provider, webhooks, and removing unused dependencies.
examplesProvides example configurations, authentication methods, and provider-specific examples.
local_serverContains an implementation of the Retrieval Plugin configured for localhost testing.
modelsContains the data models used by the plugin, such as document and metadata models.
scriptsOffers scripts for processing and uploading documents from different data sources.
serverHouses the main FastAPI server implementation.
servicesContains utility services for tasks like chunking, metadata extraction, and PII detection.
testsIncludes integration tests for various vector database providers.
.well-knownStores the plugin manifest file and OpenAPI schema, which define the plugin configuration and API specification.

This README provides detailed information on how to set up, develop, and deploy the ChatGPT Retrieval Plugin (stand-alone retrieval backend).

Table of Contents

Quickstart

Follow these steps to quickly set up and run the ChatGPT Retrieval Plugin:

  1. Install Python 3.10, if not already installed.

  2. Clone the repository: git clone https://github.com/openai/chatgpt-retrieval-plugin.git

  3. Navigate to the cloned repository directory: cd /path/to/chatgpt-retrieval-plugin

  4. Install poetry: pip install poetry

  5. Create a new virtual environment with Python 3.10: poetry env use python3.10

  6. Activate the virtual environment: poetry shell

  7. Install app dependencies: poetry install

  8. Create a bearer token

  9. Set the required environment variables:

    export DATASTORE=<your_datastore>
    export BEARER_TOKEN=<your_bearer_token>
    export OPENAI_API_KEY=<your_openai_api_key>
    export EMBEDDING_DIMENSION=256 # edit this value based on the dimension of the embeddings you want to use
    export EMBEDDING_MODEL=text-embedding-3-large # edit this based on your model preference, e.g. text-embedding-3-small, text-embedding-ada-002
    
    # Optional environment variables used when running Azure OpenAI
    export OPENAI_API_BASE=https://<AzureOpenAIName>.openai.azure.com/
    export OPENAI_API_TYPE=azure
    export OPENAI_EMBEDDINGMODEL_DEPLOYMENTID=<Name of embedding model deployment>
    export OPENAI_METADATA_EXTRACTIONMODEL_DEPLOYMENTID=<Name of deployment of model for metatdata>
    export OPENAI_COMPLETIONMODEL_DEPLOYMENTID=<Name of general model deployment used for completion>
    export OPENAI_EMBEDDING_BATCH_SIZE=<Batch size of embedding, for AzureOAI, this value need to be set as 1>
    
    # Add the environment variables for your chosen vector DB.
    # Some of these are optional; read the provider's setup docs in /docs/providers for more information.
    
    # Pinecone
    export PINECONE_API_KEY=<your_pinecone_api_key>
    export PINECONE_ENVIRONMENT=<your_pinecone_environment>
    export PINECONE_INDEX=<your_pinecone_index>
    
    # Weaviate
    export WEAVIATE_URL=<your_weaviate_instance_url>
    export WEAVIATE_API_KEY=<your_api_key_for_WCS>
    export WEAVIATE_CLASS=<your_optional_weaviate_class>
    
    # Zilliz
    export ZILLIZ_COLLECTION=<your_zilliz_collection>
    export ZILLIZ_URI=<your_zilliz_uri>
    export ZILLIZ_USER=<your_zilliz_username>
    export ZILLIZ_PASSWORD=<your_zilliz_password>
    
    # Milvus
    export MILVUS_COLLECTION=<your_milvus_collection>
    export MILVUS_HOST=<your_milvus_host>
    export MILVUS_PORT=<your_milvus_port>
    export MILVUS_USER=<your_milvus_username>
    export MILVUS_PASSWORD=<your_milvus_password>
    
    # Qdrant
    export QDRANT_URL=<your_qdrant_url>
    export QDRANT_PORT=<your_qdrant_port>
    export QDRANT_GRPC_PORT=<your_qdrant_grpc_port>
    export QDRANT_API_KEY=<your_qdrant_api_key>
    export QDRANT_COLLECTION=<your_qdrant_collection>
    
    # AnalyticDB
    export PG_HOST=<your_analyticdb_host>
    export PG_PORT=<your_analyticdb_port>
    export PG_USER=<your_analyticdb_username>
    export PG_PASSWORD=<your_analyticdb_password>
    export PG_DATABASE=<your_analyticdb_database>
    export PG_COLLECTION=<your_analyticdb_collection>
    
    
    # Redis
    export REDIS_HOST=<your_redis_host>
    export REDIS_PORT=<your_redis_port>
    export REDIS_PASSWORD=<your_redis_password>
    export REDIS_INDEX_NAME=<your_redis_index_name>
    export REDIS_DOC_PREFIX=<your_redis_doc_prefix>
    export REDIS_DISTANCE_METRIC=<your_redis_distance_metric>
    export REDIS_INDEX_TYPE=<your_redis_index_type>
    
    # Llama
    export LLAMA_INDEX_TYPE=<gpt_vector_index_type>
    export LLAMA_INDEX_JSON_PATH=<path_to_saved_index_json_file>
    export LLAMA_QUERY_KWARGS_JSON_PATH=<path_to_saved_query_kwargs_json_file>
    export LLAMA_RESPONSE_MODE=<response_mode_for_query>
    
    # Chroma
    export CHROMA_COLLECTION=<your_chroma_collection>
    export CHROMA_IN_MEMORY=<true_or_false>
    export CHROMA_PERSISTENCE_DIR=<your_chroma_persistence_directory>
    export CHROMA_HOST=<your_chroma_host>
    export CHROMA_PORT=<your_chroma_port>
    
    # Azure Cognitive Search
    export AZURESEARCH_SERVICE=<your_search_service_name>
    export AZURESEARCH_INDEX=<your_search_index_name>
    export AZURESEARCH_API_KEY=<your_api_key> (optional, uses key-free managed identity if not set)
    
    # Azure CosmosDB Mongo vCore
    export AZCOSMOS_API = <your azure cosmos db api, for now it only supports mongo>
    export AZCOSMOS_CONNSTR = <your azure cosmos db mongo vcore connection string>
    export AZCOSMOS_DATABASE_NAME = <your mongo database name>
    export AZCOSMOS_CONTAINER_NAME = <your mongo container name>
    
    # Supabase
    export SUPABASE_URL=<supabase_project_url>
    export SUPABASE_ANON_KEY=<supabase_project_api_anon_key>
    
    # Postgres
    export PG_HOST=<postgres_host>
    export PG_PORT=<postgres_port>
    export PG_USER=<postgres_user>
    export PG_PASSWORD=<postgres_password>
    export PG_DB=<postgres_database>
    
    # Elasticsearch
    export ELASTICSEARCH_URL=<elasticsearch_host_and_port> (either specify host or cloud_id)
    export ELASTICSEARCH_CLOUD_ID=<elasticsearch_cloud_id>
    
    export ELASTICSEARCH_USERNAME=<elasticsearch_username>
    export ELASTICSEARCH_PASSWORD=<elasticsearch_password>
    export ELASTICSEARCH_API_KEY=<elasticsearch_api_key>
    
    export ELASTICSEARCH_INDEX=<elasticsearch_index_name>
    export ELASTICSEARCH_REPLICAS=<elasticsearch_replicas>
    export ELASTICSEARCH_SHARDS=<elasticsearch_shards>
    
    # MongoDB Atlas
    export MONGODB_URI=<mongodb_uri>
    export MONGODB_DATABASE=<mongodb_database>
    export MONGODB_COLLECTION=<mongodb_collection>
    export MONGODB_INDEX=<mongodb_index>
    
  10. Run the API locally: poetry run start

  11. Access the API documentation at http://0.0.0.0:8000/docs and test the API endpoints (make sure to add your bearer token).

About

Retrieval Plugin

This is a standalone retrieval backend that can be used with ChatGPT custom GPTs, function calling with the chat completions or assistants APIs, or with the ChatGPT plugins model (deprecated).

It enables a model to carry out semantic search and retrieval of personal or organizational documents, and write answers informed by relevent retrieved context (sometimes referred to as "Retrieval-Augmented Generation" or "RAG"). It allows users to obtain the most relevant document snippets from their data sources, such as files, notes, or emails, by asking questions or expressing needs in natural language. Enterprises can make their internal documents available to their employees through ChatGPT using this plugin.

The plugin uses OpenAI's embeddings model (text-embedding-3-large 256 dimension embeddings by default) to generate embeddings of document chunks, and then stores and queries them using a vector database on the backend. As an open-source and self-hosted solution, developers can deploy their own Retrieval Plugin and register it with ChatGPT. The Retrieval Plugin supports several vector database providers, allowing developers to choose their preferred one from a list.

A FastAPI server exposes the plugin's endpoints for upserting, querying, and deleting documents. Users can refine their search results by using metadata filters by source, date, author, or other criteria. The plugin can be hosted on any cloud platform that supports Docker containers, such as Fly.io, Heroku, Render, or Azure Container Apps. To keep the vector database updated with the latest documents, the plugin can process and store documents from various data sources continuously, using incoming webhooks to the upsert and delete endpoints. Tools like Zapier or Make can help configure the webhooks based on events or schedules.

Retrieval Plugin with Custom GPTs

To create a custom GPT that can use your Retrieval Plugin for semantic search and retrieval of your documents, and even store new information back to the database, you first need to have deployed a Retrieval Plugin. For detailed instructions on how to do this, please refer to the Deployment section. Once you have your app URL (e.g., https://your-app-url.com), take the following steps:

  1. Navigate to the create GPT page at https://chat.openai.com/gpts/editor.
  2. Follow the standard creation flow to set up your GPT.
  3. Navigate to the "Configure" tab. Here, you can manually fill in fields such as name, description, and instructions, or use the smart creator for assistance.
  4. Under the "Actions" section, click on "Create new action".
  5. Choose an authentication method. The Retrieval Plugin supports None, API key (Basic or Bearer) and OAuth. For more information on these methods, refer to the Authentication Methods Section.
  6. Import the OpenAPI schema. You can either:
    • Import directly from the OpenAPI schema hosted in your app at https://your-app-url.com/.well-known/openapi.yaml.
    • Copy and paste the contents of this file into the Schema input area if you only want to expose the query endpoint to the GPT. Remember to change the URL under the -servers section of the OpenAPI schema you paste in.
  7. Optionally, you might want to add a fetch endpoint. This would involve editing the /server/main.py file to add an endpoint and implement this for your chosen vector database. If you make this change, please consider contributing it back to the project by opening a pull request! Adding the fetch endpoint to the OpenAPI schema would allow the model to fetch more content from a document by ID if some text is cut off in the retrieved result. It might also be useful to pass in a string with the text from the retrieved result and an option to return a fixed length of context before and after the retrieved result.
  8. If you want the GPT to be able to save information back to the vector database, you can give it access to the Retrieval Plugin's /upsert endpoint. To do this, copy the contents of this file into the schema area. This allows the GPT to store new information it generates or learns during the conversation. More details on this feature can be found at Memory Feature and in the docs here.

Remember: ChatGPT and custom GPTs natively support retrieval from uploaded files, so you should use the Retrieval Plugin as a backend only if you want more granular control of your retrieval system (e.g. self-hosting, embedding chunk length, embedding model / size, etc.).

Retrieval Plugin with Function Calling

The Retrieval Plugin can be integrated with function calling in both the Chat Completions API and the Assistants API. This allows the model to decide when to use your functions (query, fetch, upsert) based on the conversation context.

Function Calling with Chat Completions

In a call to the chat completions API, you can describe functions and have the model generate a JSON object containing arguments to call one or many functions. The latest models (gpt-3.5-turbo-0125 and gpt-4-turbo-preview) have been trained to detect when a function should be called and to respond with JSON that adheres to the function signature.

You can define the functions for the Retrieval Plugin endpoints and pass them in as tools when you use the Chat Completions API with one of the latest models. The model will then intelligently call the functions. You can use function calling to write queries to your APIs, call the endpoint on the backend, and return the response as a tool message to the model to continue the conversation. The function definitions/schemas and an example can be found here.

Function Calling with Assistants API

You can use the same function definitions with the OpenAI Assistants API, specifically the function calling in tool use. The Assistants API allows you to build AI assistants within your own applications, leveraging models, tools, and knowledge to respond to user queries. The function definitions/schemas and an example can be found here. The Assistants API natively supports retrieval from uploaded files, so you should use the Retrieval Plugin with function calling only if you want more granular control of your retrieval system (e.g. embedding chunk length, embedding model / size,

编辑推荐精选

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

下拉加载更多