StyleShot

StyleShot

多样化风格迁移的AI图像生成开源项目

StyleShot是一个开源的AI图像生成项目,专注于实现广泛的风格迁移能力。通过风格感知编码器和StyleGallery数据集,它能够模仿3D、扁平、抽象等多种风格,无需测试时微调。项目在风格迁移性能上展现出优势,为图像风格化研究提供了新的方向和可能性。

StyleShot图像风格迁移AI绘图深度学习计算机视觉Github开源项目

StyleShot: 任意风格的快照

<div align="center">

<a href='https://arxiv.org/abs/2407.01414'><img src='https://yellow-cdn.veclightyear.com/835a84d5/60f1081d-5467-428a-86ac-da30f895413b.svg'></a>       <a href='https://styleshot.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>       <a href='https://openxlab.org.cn/apps/detail/lianchen/StyleShot'><img src='https://yellow-cdn.veclightyear.com/835a84d5/5165b426-3712-401b-9a33-e59fe6231bf0.svg'></a>       <a href='https://huggingface.co/Gaojunyao/StyleShot'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>       <a target="_blank" href="https://huggingface.co/spaces/nowsyn/StyleShot"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/29cd0853-7e2e-464d-9d8d-62a412d8e27f.svg" alt="Online Demo in HF"/> </a>

高俊尧, 刘彦辰, 孙亚楠<sup></sup>, 唐寅豪, 曾艳红, 陈凯*, 赵彩荣* <br><br> (* 通讯作者, <sup></sup> 项目负责人)

来自同济大学和上海人工智能实验室。

</div>

摘要

在本文中,我们展示了一个好的风格表示对于无需测试时调整的广义风格迁移至关重要且足够。我们通过构建一个风格感知编码器和一个组织良好的风格数据集StyleGallery来实现这一目标。通过专门设计用于风格学习,这个风格感知编码器经过解耦训练策略的训练,可以提取富有表现力的风格表示,而StyleGallery则赋予了泛化能力。我们还采用了一个内容融合编码器来增强图像驱动的风格迁移。我们强调,我们的方法StyleShot简单而有效,无需测试时调整即可模仿各种所需风格,如3D、平面、抽象甚至细粒度风格。严格的实验验证表明,与现有最先进的方法相比,StyleShot在广泛的风格范围内实现了卓越的性能。

架构图

新闻

开始使用

# 安装styleshot
git clone https://github.com/Jeoyal/StyleShot.git
cd StyleShot

# 创建conda环境
conda create -n styleshot python==3.8
conda activate styleshot
pip install -r requirements.txt

# 下载模型
git lfs install
git clone https://huggingface.co/Gaojunyao/StyleShot
git clone https://huggingface.co/Gaojunyao/StyleShot_lineart

模型

你可以从这里下载我们的预训练权重。要运行演示,你还需要下载以下模型:

推理

对于推理,你应该下载预训练权重并准备自己的参考风格图像或内容图像。

# 运行文本驱动的风格迁移演示
python styleshot_text_driven_demo.py --style "{风格图像路径}" --prompt "{提示词}" --output "{保存路径}"

# 运行图像驱动的风格迁移演示
python styleshot_image_driven_demo.py --style "{风格图像路径}"  --content "{内容图像路径}" --preprocessor "Contour" --prompt "{提示词}" --output "{保存路径}"

# 将styleshot与controlnet和t2i-adapter集成
python styleshot_t2i-adapter_demo.py --style "{风格图像路径}"  --condition "{条件图像路径}" --prompt "{提示词}" --output "{保存路径}"
python styleshot_controlnet_demo.py --style "{风格图像路径}"  --condition "{条件图像路径}" --prompt "{提示词}" --output "{保存路径}"
<div align="center"> <img src=assets/text_driven.png> <p>文本驱动风格迁移可视化</p> </div> <div align="center"> <img src=assets/image_driven.png> <p>图像风格迁移可视化</p> </div>

训练

我们采用两阶段训练策略来训练我们的StyleShot,以更好地融合内容和风格。对于训练数据,您可以使用我们的训练数据集StyleGallery或将自己的数据集制作成json文件。

# 训练阶段1,仅训练风格组件。
accelerate launch --num_processes 8 --multi_gpu --mixed_precision "fp16" \
  tutorial_train_styleshot_stage_1.py \
  --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5/" \
  --image_encoder_path="{图像编码器路径}" \
  --image_json_file="{data.json}" \
  --image_root_path="{图像路径}" \
  --mixed_precision="fp16" \
  --resolution=512 \
  --train_batch_size=16 \
  --dataloader_num_workers=4 \
  --learning_rate=1e-04 \
  --weight_decay=0.01 \
  --output_dir="{输出目录}" \
  --save_steps=10000

# 训练阶段2,仅训练内容组件。
accelerate launch --num_processes 8 --multi_gpu --mixed_precision "fp16" \
  tutorial_train_styleshot_stage_2.py \
  --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5/" \
  --pretrained_ip_adapter_path="./pretrained_weight/ip.bin" \
  --pretrained_style_encoder_path="./pretrained_weight/style_aware_encoder.bin" \
  --image_encoder_path="{图像编码器路径}" \
  --image_json_file="{data.json}" \
  --image_root_path="{图像路径}" \
  --mixed_precision="fp16" \
  --resolution=512 \
  --train_batch_size=16 \
  --dataloader_num_workers=4 \
  --learning_rate=1e-04 \
  --weight_decay=0.01 \
  --output_dir="{输出目录}" \
  --save_steps=10000

StyleGallery<a name="style_gallery"></a>

我们精心策划了一个风格平衡的数据集,称为StyleGallery,其中包含从公开可用数据集中提取的广泛多样的图像风格,用于训练我们的StyleShot。 要准备我们的数据集StyleGallery,请参考教程,或从这里下载json文件。

StyleBench

为解决基于参考的风格化生成缺乏基准的问题,我们建立了一个<a href='https://drive.google.com/file/d/1I-Zv5blsrJsckXrvcP_f8TJ4gy6xrwCA/view?usp=drive_link'>风格评估基准</a>,包含490个参考图像中的73种不同风格。

免责声明

我们开发此仓库用于研究目的,因此它只能用于个人/研究/非商业用途。

引用

如果您发现StyleShot对您的研究和应用有用,请使用以下BibTeX进行引用:

@article{gao2024styleshot, title={StyleShot: A Snapshot on Any Style}, author={Junyao, Gao and Yanchen, Liu and Yanan, Sun and Yinhao, Tang and Yanhong, Zeng and Kai, Chen and Cairong, Zhao}, booktitle={arXiv preprint arxiv:2407.01414}, year={2024} }

致谢

该代码基于<a href='https://github.com/tencent-ailab/IP-Adapter'>IP-Adapter</a>构建。

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多