Fast-Kubernetes

Fast-Kubernetes

掌握Kubernetes核心概念与实践技能

Fast-Kubernetes项目详细介绍了Kubernetes的核心对象和组件,包括Kubectl、Pod、Deployment和Service等。通过实践场景和动手实验,该项目帮助学习者从创建简单Pod到实现复杂集群监控,全面掌握Kubernetes技能。项目内容丰富全面,是深入学习Kubernetes的优质参考资源。

Kubernetes容器编排Pod集群KubectlGithub开源项目

Fast-Kubernetes

This repo covers Kubernetes objects' and components' details (Kubectl, Pod, Deployment, Service, ConfigMap, Volume, PV, PVC, Daemonset, Secret, Affinity, Taint-Toleration, Helm, etc.) fastly, and possible example usage scenarios (HowTo: Hands-on LAB) in a nutshell. Possible usage scenarios are aimed to update over time.

Prerequisite

  • Have a knowledge of Container Technology (Docker). You can learn it from here => Fast-Docker

Keywords: Containerization, Kubernetes, Kubectl, Pod, Deployment, Service, ConfigMap, ReplicaSet, Volume, Cheatsheet.

Note: K8s objects and objects feature can be updated/changed in time. While creating this repo, the version of K8s was v1.22.3. Some sections are trying to be kept up to date. Especially Creating K8s Cluster with Kubeadm and Containerd.

Quick Look (HowTo): Scenarios - Hands-on LAB

Table of Contents

Motivation <a name="motivation"></a>

Why should we use Kubernetes? "Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services, that facilitates both declarative configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available." (Ref: Kubernetes.io)

What is Containerization? What is Container Orchestration? <a name="containerization"></a>

  • "Containerization is an operating system-level virtualization or application-level virtualization over multiple network resources so that software applications can run in isolated user spaces called containers in any cloud or non-cloud environment" (wikipedia)
  • With Docker Environment, we can create containers.
  • Kubernetes and Docker Swarm are the container orchestration and management tools that automate and schedule the deployment, management, scaling, and networking of containers.

image

Features <a name="features"></a>

  • Service discovery and load balancing: Kubernetes can expose a container using the DNS name or using their own IP address. If traffic to a container is high, Kubernetes is able to load balance and distribute the network traffic so that the deployment is stable.
  • Storage orchestration: Kubernetes allows you to automatically mount a storage system of your choice, such as local storages, public cloud providers, and more.
  • Automated rollouts and rollbacks:  You can describe the desired state for your deployed containers using Kubernetes, and it can change the actual state to the desired state at a controlled rate.
  • Automatic bin packing: You tell Kubernetes how much CPU and memory (RAM) each container needs. Kubernetes can fit containers onto your nodes to make the best use of your resources.
  • Self-monitoring: Kubernetes checks constantly the health of nodes and containers
  • Self-healing: Kubernetes restarts containers that fail, replaces containers, kills containers that don't respond to your user-defined health check
  • Automates various manual processes: for instance, Kubernetes will control for you which server will host the container, how it will be launched etc.
  • Interacts with several groups of containers: Kubernetes is able to manage more cluster at the same time
  • Provides additional services: as well as the management of containers, Kubernetes offers security, networking and storage services
  • Horizontal scaling: Kubernetes allows you scaling resources not only vertically but also horizontally, easily and quickly
  • Container balancing: Kubernetes always knows where to place containers, by calculating the “best location” for them
  • Run everywhere: Kubernetes is an open source tool and gives you the freedom to take advantage of on-premises, hybrid, or public cloud infrastructure, letting you move workloads to anywhere you want
  • Secret and configuration management: Kubernetes lets you store and manage sensitive information

What is Kubernetes? <a name="whatIsKubernetes"></a>

  • "Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services, that facilitates both declarative configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available." (Ref: Kubernetes.io)

image (Ref: Kubernetes.io)

Kubernetes Architecture <a name="architecture"></a>

image

Kubernetes Components <a name="components"></a> (Ref: Kubernetes.io)

  • Control Plane: User enters commands and configuration files from control plane. It controls all cluster.
    • API Server: "It exposes the Kubernetes API. The API server is the front end for the Kubernetes control plane."
    • Etcd: "Consistent and highly-available key value store used as Kubernetes' backing store for all cluster data (meta data, objects, etc.)."
    • Scheduler: "It watches for newly created Pods with no assigned node, and selects a node for them to run on.
      • Factors taken into account for scheduling decisions include:
        • individual and collective resource requirements,
        • hardware/software/policy constraints,
        • affinity and anti-affinity specifications,
        • data locality,
        • inter-workload interference,
        • deadlines."
    • Controller Manager: "It runs controller processes.
      • Logically, each controller is a separate process, but to reduce complexity, they are all compiled into a single binary and run in a single process.
      • Some types of these controllers are:
        • Node controller: Responsible for noticing and responding when nodes go down.
        • Job controller: Watches for Job objects that represent one-off tasks, then creates Pods to run those tasks to completion.
        • Endpoints controller: Populates the Endpoints object (that is, joins Services & Pods).
        • Service Account & Token controllers: Create default accounts and API access tokens for new namespaces"
    • Cloud Controller Manager: "It embeds cloud-specific control logic. The cloud controller manager lets you link your cluster into your cloud provider's API, and separates out the components that interact with that cloud platform from components that only interact with your cluster. The cloud-controller-manager only runs controllers that are specific to your cloud provider
      • The following controllers can have cloud provider dependencies:
        • Node controller: For checking the cloud provider to determine if a node has been deleted in the cloud after it stops responding
        • Route controller: For setting up routes in the underlying cloud infrastructure
        • Service controller: For creating, updating and deleting cloud provider load balancers."
  • Node: "Node components run on every node, maintaining running pods and providing the Kubernetes runtime environment."
    • Kubelet: "An agent that runs on each node in the cluster. It makes sure that containers are running in a Pod. The kubelet takes a set of PodSpecs that are provided through various mechanisms and ensures that the containers described in those PodSpecs are running and healthy."
    • Kube-proxy: "It is a network proxy that runs on each node in your cluster, implementing part of the Kubernetes Service concept.
      • It maintains network rules on nodes. These network rules allow network communication to your Pods from network sessions inside or outside of your cluster.
      • It uses the operating system packet filtering layer if there is one and it's available. Otherwise, kube-proxy forwards the traffic itself."
    • Container Runtime: "The container runtime is the software that is responsible for running containers.
      • Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and any implementation of the Kubernetes CRI (Container Runtime Interface)"

image

Installation <a name="installation"></a>

Download:

  • Kubectl: The Kubernetes command-line tool, kubectl, allows you to run commands against Kubernetes clusters.
  • Minikube: It is a tool that lets you run Kubernetes locally. It runs a single-node Kubernetes cluster on your personal computer (https://minikube.sigs.k8s.io/docs/start/)
  • KubeAdm: You can use the kubeadm tool to create and manage Kubernetes clusters. This is for creating cluster with computers (Goto: LAB: K8s Kubeadm Cluster Setup).

from here=> https://kubernetes.io/docs/tasks/tools/

For learning K8s and running on a computer, Kubectl and Minikube are enough to install.

PS: Cloud providers (Azure, Google Cloud, AWS) offer managed K8s (control plane is managed by cloud provides). You can easily create your cluster (number of computer and details) and make connection with Kubectl (using CLI get-credentials of cluster on the cloud)

Kubectl Config – Usage <a name="kubectl"></a>

Config File

  • You can communicate with K8s cluster in different ways: REST API, Command Line Tool (CLI-Kubectl), GUI (kube-dashboard, etc.)
  • After installation, you can find the kubernetes config file (C:\Users\User.kube\config) that is YAML file.
  • Config file contains 3 main parts: Clusters (cluster certificate data, server, name), Context (cluster and user, namespace), Users (name, config features, certificates, etc.)

Usage

  • Kubectl is our main command line tool that connects minikube. There are many combination of commands. So it is not possible to list all commands.
  • When run "kubectl" on the terminal, it can be seen some simple commands. Also "kubectl <command> --help" gives more information.
  • Pattern: kubectl [get|delete|edit|apply] [pods|deployment|services] [podName|serviceName|deploymentName]
  • Example: "kubectl get pods podName", "kubectl delete pods test_pod", "kubectl describe pods firstpod", etc.
  • All necessary/most usable commands are listed in the "Kubernetes Commands Cheatsheet". Please have a look to get more information and usage.

Pod: Creating, Yaml, LifeCycle <a name="pod"></a>

  • Pod is the smallest unit that is created and managed in K8s.
  • Pods may contain more than 1 container, but mostly pods contain only 1 container.
  • Each pod has unique id (uid).
  • Each pod has unique IP address.
  • Containers in the same Pod run on the same Node (computer), and these containers can communicate with each other on the localhost.
  • Creation of the first pod, IMPERATIVE WAY (with command):
  • Please have a look Scenario (Creating Pod - Imperative way, below link) to learn more information about the pod's kubectl commands.
    • how to create basic K8s pod using imperative commands,
    • how to get more information about pod (to solve troubleshooting),
    • how to run commands in pod,
    • how to delete pod.

Goto the Scenario: [LAB: K8s Creating Pod - Imperative

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多