multi-qa-mpnet-base-dot-v1

multi-qa-mpnet-base-dot-v1

基于自监督对比学习的句子语义搜索模型

该模型用于提升语义搜索能力,将句子和段落映射至768维向量空间,达成高效信息检索。训练依托逾2.15亿问答对,覆盖丰富数据集与平台。模型应用CLS池化与点积相似度评估,适合处理有限文本语义匹配,同时支持sentence-transformers与HuggingFace Transformers两种使用方式,满足不同开发者需求。

句子嵌入对比学习开源项目sentence-transformersGithub模型Huggingface语义搜索句子相似度

multi-qa-mpnet-base-dot-v1项目介绍

项目背景

multi-qa-mpnet-base-dot-v1是一个用于句子嵌入的模型,旨在将句子和段落映射到768维的密集向量空间,特别设计用于语义搜索。其训练数据包含来自多种来源的2.15亿个问题和答案对。该模型开发于 Hugging Face 组织的“Community Week using JAX/Flax for NLP & CV”活动,旨在创建一个卓越的句子嵌入模型。

使用方法

使用Sentence-Transformers

安装必要库:

pip install -U sentence-transformers

使用模型的示例代码:

from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-dot-v1') query_emb = model.encode(query) doc_emb = model.encode(docs) scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() doc_score_pairs = list(zip(docs, scores)) doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) for doc, score in doc_score_pairs: print(score, doc)

使用HuggingFace Transformers

通过HuggingFace Transformers使用模型:

from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output): return model_output.last_hidden_state[:,0] def encode(texts): encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) embeddings = cls_pooling(model_output) return embeddings query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") query_emb = encode(query) doc_emb = encode(docs) scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() doc_score_pairs = list(zip(docs, scores)) doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) for doc, score in doc_score_pairs: print(score, doc)

技术细节

  • 向量维度:768
  • 生成的嵌入是否归一化:否
  • 池化方法:CLS池化
  • 适用的评分函数:点积(例如util.dot_score

项目用途

multi-qa-mpnet-base-dot-v1模型主要用于语义搜索:在稠密向量空间中对查询/问题和文本段落进行编码,以便找到与给定段落相关的文档。需要注意的是,文本输入有512个词片的限制,超过该长度会被截断,因此不适用于过长的文本。

训练过程

项目利用对比学习目标,对大型句子级数据集进行了训练。训练教程和脚本可在项目仓库中找到,模型使用预训练的mpnet-base进行初步训练,然后在多个数据集上进行微调,以使其适合更广泛的应用场景。训练数据集包含WikiAnswers, PAQ, Stack Exchange, MS MARCO等一系列数据资源,总共超过2.14亿个训练对。

通过这些努力,multi-qa-mpnet-base-dot-v1实现了在语义搜索任务中的显著性能提升。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多