torchxrayvision

torchxrayvision

胸部X光影像分析工具库

TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。

TorchXRayVision胸部X光深度学习预训练模型数据集Github开源项目

🚨 Paper now online! https://arxiv.org/abs/2111.00595

🚨 Documentation now online! https://mlmed.org/torchxrayvision/

TorchXRayVision

<img src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/torchxrayvision-logo.png" width="300px"/>(🎬 promo video) <br><img src="http://img.youtube.com/vi/Rl7xz0uULGQ/0.jpg" width="400px"/>)

What is it?

A library for chest X-ray datasets and models. Including pre-trained models.

TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors.

  • In the case of researchers addressing clinical questions it is a waste of time for them to train models from scratch. To address this, TorchXRayVision provides pre-trained models which are trained on large cohorts of data and enables 1) rapid analysis of large datasets 2) feature reuse for few-shot learning.
  • In the case of researchers developing algorithms it is important to robustly evaluate models using multiple external datasets. Metadata associated with each dataset can vary greatly which makes it difficult to apply methods to multiple datasets. TorchXRayVision provides access to many datasets in a uniform way so that they can be swapped out with a single line of code. These datasets can also be merged and filtered to construct specific distributional shifts for studying generalization.

Twitter: @torchxrayvision

Getting started

$ pip install torchxrayvision
import torchxrayvision as xrv import skimage, torch, torchvision # Prepare the image: img = skimage.io.imread("16747_3_1.jpg") img = xrv.datasets.normalize(img, 255) # convert 8-bit image to [-1024, 1024] range img = img.mean(2)[None, ...] # Make single color channel transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),xrv.datasets.XRayResizer(224)]) img = transform(img) img = torch.from_numpy(img) # Load model and process image model = xrv.models.DenseNet(weights="densenet121-res224-all") outputs = model(img[None,...]) # or model.features(img[None,...]) # Print results dict(zip(model.pathologies,outputs[0].detach().numpy())) {'Atelectasis': 0.32797316, 'Consolidation': 0.42933336, 'Infiltration': 0.5316924, 'Pneumothorax': 0.28849724, 'Edema': 0.024142697, 'Emphysema': 0.5011832, 'Fibrosis': 0.51887786, 'Effusion': 0.27805611, 'Pneumonia': 0.18569896, 'Pleural_Thickening': 0.24489835, 'Cardiomegaly': 0.3645515, 'Nodule': 0.68982, 'Mass': 0.6392845, 'Hernia': 0.00993878, 'Lung Lesion': 0.011150705, 'Fracture': 0.51916164, 'Lung Opacity': 0.59073937, 'Enlarged Cardiomediastinum': 0.27218717}

A sample script to process images usings pretrained models is process_image.py

$ python3 process_image.py ../tests/00000001_000.png
{'preds': {'Atelectasis': 0.50500506,
           'Cardiomegaly': 0.6600903,
           'Consolidation': 0.30575264,
           'Edema': 0.274184,
           'Effusion': 0.4026162,
           'Emphysema': 0.5036339,
           'Enlarged Cardiomediastinum': 0.40989172,
           'Fibrosis': 0.53293407,
           'Fracture': 0.32376793,
           'Hernia': 0.011924741,
           'Infiltration': 0.5154413,
           'Lung Lesion': 0.22231922,
           'Lung Opacity': 0.2772148,
           'Mass': 0.32237658,
           'Nodule': 0.5091847,
           'Pleural_Thickening': 0.5102617,
           'Pneumonia': 0.30947986,
           'Pneumothorax': 0.24847917}}

Models (demo notebook)

Specify weights for pretrained models (currently all DenseNet121) Note: Each pretrained model has 18 outputs. The all model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field {dataset}.pathologies on the dataset that corresponds to the weights.

## 224x224 models model = xrv.models.DenseNet(weights="densenet121-res224-all") model = xrv.models.DenseNet(weights="densenet121-res224-rsna") # RSNA Pneumonia Challenge model = xrv.models.DenseNet(weights="densenet121-res224-nih") # NIH chest X-ray8 model = xrv.models.DenseNet(weights="densenet121-res224-pc") # PadChest (University of Alicante) model = xrv.models.DenseNet(weights="densenet121-res224-chex") # CheXpert (Stanford) model = xrv.models.DenseNet(weights="densenet121-res224-mimic_nb") # MIMIC-CXR (MIT) model = xrv.models.DenseNet(weights="densenet121-res224-mimic_ch") # MIMIC-CXR (MIT) # 512x512 models model = xrv.models.ResNet(weights="resnet50-res512-all") # DenseNet121 from JF Healthcare for the CheXpert competition model = xrv.baseline_models.jfhealthcare.DenseNet() # Official Stanford CheXpert model model = xrv.baseline_models.chexpert.DenseNet(weights_zip="chexpert_weights.zip") # Emory HITI lab race prediction model model = xrv.baseline_models.emory_hiti.RaceModel() model.targets -> ["Asian", "Black", "White"] # Riken age prediction model model = xrv.baseline_models.riken.AgeModel()

Benchmarks of the modes are here: BENCHMARKS.md and the performance of some of the models can be seen in this paper arxiv.org/abs/2002.02497.

Autoencoders

You can also load a pre-trained autoencoder that is trained on the PadChest, NIH, CheXpert, and MIMIC datasets.

ae = xrv.autoencoders.ResNetAE(weights="101-elastic") z = ae.encode(image) image2 = ae.decode(z)

Segmentation

You can load pretrained anatomical segmentation models. Demo Notebook

seg_model = xrv.baseline_models.chestx_det.PSPNet() output = seg_model(image) output.shape # [1, 14, 512, 512] seg_model.targets # ['Left Clavicle', 'Right Clavicle', 'Left Scapula', 'Right Scapula', # 'Left Lung', 'Right Lung', 'Left Hilus Pulmonis', 'Right Hilus Pulmonis', # 'Heart', 'Aorta', 'Facies Diaphragmatica', 'Mediastinum', 'Weasand', 'Spine']

Datasets

View docstrings for more detail on each dataset and Demo notebook and Example loading script

transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(), xrv.datasets.XRayResizer(224)]) # RSNA Pneumonia Detection Challenge. https://pubs.rsna.org/doi/full/10.1148/ryai.2019180041 d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="path to stage_2_train_images_jpg", transform=transform) # CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. https://arxiv.org/abs/1901.07031 d_chex = xrv.datasets.CheX_Dataset(imgpath="path to CheXpert-v1.0-small", csvpath="path to CheXpert-v1.0-small/train.csv", transform=transform) # National Institutes of Health ChestX-ray8 dataset. https://arxiv.org/abs/1705.02315 d_nih = xrv.datasets.NIH_Dataset(imgpath="path to NIH images") # A relabelling of a subset of NIH images from: https://pubs.rsna.org/doi/10.1148/radiol.2019191293 d_nih2 = xrv.datasets.NIH_Google_Dataset(imgpath="path to NIH images") # PadChest: A large chest x-ray image dataset with multi-label annotated reports. https://arxiv.org/abs/1901.07441 d_pc = xrv.datasets.PC_Dataset(imgpath="path to image folder") # COVID-19 Image Data Collection. https://arxiv.org/abs/2006.11988 d_covid19 = xrv.datasets.COVID19_Dataset() # specify imgpath and csvpath for the dataset # SIIM Pneumothorax Dataset. https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation d_siim = xrv.datasets.SIIM_Pneumothorax_Dataset(imgpath="dicom-images-train/", csvpath="train-rle.csv") # VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations. https://arxiv.org/abs/2012.15029 d_vin = xrv.datasets.VinBrain_Dataset(imgpath=".../train", csvpath=".../train.csv") # National Library of Medicine Tuberculosis Datasets. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/ d_nlmtb = xrv.datasets.NLMTB_Dataset(imgpath="path to MontgomerySet or ChinaSet_AllFiles")

Dataset fields

Each dataset contains a number of fields. These fields are maintained when xrv.datasets.Subset_Dataset and xrv.datasets.Merge_Dataset are used.

  • .pathologies This field is a list of the pathologies contained in this dataset that will be contained in the .labels field ].

  • .labels This field contains a 1,0, or NaN for each label defined in .pathologies.

  • .csv This field is a pandas DataFrame of the metadata csv file that comes with the data. Each row aligns with the elements of the dataset so indexing using .iloc will work.

If possible, each dataset's .csv will have some common fields of the csv. These will be aligned when The list is as follows:

  • csv.patientid A unique id that will uniqely identify samples in this dataset

  • csv.offset_day_int An integer time offset for the image in the unit of days. This is expected to be for relative times and has no absolute meaning although for some datasets it is the epoch time.

  • csv.age_years The age of the patient in years.

  • csv.sex_male If the patient is male

  • csv.sex_female If the patient is female

Dataset tools

relabel_dataset will align labels to have the same order as the pathologies argument.

xrv.datasets.relabel_dataset(xrv.datasets.default_pathologies , d_nih) # has side effects

specify a subset of views (demo notebook)

d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...", views=["PA","AP","AP Supine"])

specify only 1 image per patient

d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...", unique_patients=True)

obtain summary statistics per dataset

d_chex = xrv.datasets.CheX_Dataset(imgpath="CheXpert-v1.0-small", csvpath="CheXpert-v1.0-small/train.csv", views=["PA","AP"], unique_patients=False) CheX_Dataset num_samples=191010 views=['PA', 'AP'] {'Atelectasis': {0.0: 17621, 1.0: 29718}, 'Cardiomegaly': {0.0: 22645, 1.0: 23384}, 'Consolidation': {0.0: 30463, 1.0: 12982}, 'Edema': {0.0: 29449, 1.0: 49674}, 'Effusion': {0.0: 34376, 1.0: 76894}, 'Enlarged Cardiomediastinum': {0.0: 26527, 1.0: 9186}, 'Fracture': {0.0: 18111, 1.0: 7434}, 'Lung Lesion': {0.0: 17523, 1.0: 7040}, 'Lung Opacity': {0.0: 20165, 1.0: 94207}, 'Pleural Other': {0.0: 17166, 1.0: 2503}, 'Pneumonia': {0.0: 18105, 1.0: 4674}, 'Pneumothorax': {0.0: 54165, 1.0: 17693}, 'Support Devices': {0.0: 21757, 1.0: 99747}}

Pathology masks (demo notebook)

Masks are available in the following datasets:

xrv.datasets.RSNA_Pneumonia_Dataset() # for Lung Opacity xrv.datasets.SIIM_Pneumothorax_Dataset() # for Pneumothorax xrv.datasets.NIH_Dataset() # for Cardiomegaly, Mass, Effusion, ...

Example usage:

d_rsna = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="stage_2_train_images_jpg", views=["PA","AP"], pathology_masks=True) # The has_masks column will let you know if any masks exist for that sample d_rsna.csv.has_masks.value_counts() False 20672 True 6012 # Each sample will have a pathology_masks dictionary where the index # of each pathology will correspond to a mask of that pathology (if it exists). # There may be more than one mask per sample. But only one per pathology. sample["pathology_masks"][d_rsna.pathologies.index("Lung Opacity")]

it also works with data_augmentation if you pass in data_aug=data_transforms to the dataloader. The random seed is matched to align calls for the image and the mask.

Distribution shift tools (demo notebook)

The class xrv.datasets.CovariateDataset takes two datasets and two arrays representing the labels. The samples will be returned with the desired ratio of images from each site. The goal here is to simulate a covariate shift to make a model focus on an incorrect feature. Then the shift can be reversed in the validation data causing a catastrophic failure in generalization performance.

ratio=0.0 means images from d1 will have a positive label ratio=0.5 means images from d1 will have half of the positive labels ratio=1.0 means images from d1 will have no positive label

With any ratio the number of samples returned will be the same.

d = xrv.datasets.CovariateDataset(d1 = # dataset1 with a specific condition d1_target = #target label to predict, d2 = # dataset2 with

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多