torchxrayvision

torchxrayvision

胸部X光影像分析工具库

TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。

TorchXRayVision胸部X光深度学习预训练模型数据集Github开源项目

🚨 Paper now online! https://arxiv.org/abs/2111.00595

🚨 Documentation now online! https://mlmed.org/torchxrayvision/

TorchXRayVision

<img src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/torchxrayvision-logo.png" width="300px"/>(🎬 promo video) <br><img src="http://img.youtube.com/vi/Rl7xz0uULGQ/0.jpg" width="400px"/>)

What is it?

A library for chest X-ray datasets and models. Including pre-trained models.

TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors.

  • In the case of researchers addressing clinical questions it is a waste of time for them to train models from scratch. To address this, TorchXRayVision provides pre-trained models which are trained on large cohorts of data and enables 1) rapid analysis of large datasets 2) feature reuse for few-shot learning.
  • In the case of researchers developing algorithms it is important to robustly evaluate models using multiple external datasets. Metadata associated with each dataset can vary greatly which makes it difficult to apply methods to multiple datasets. TorchXRayVision provides access to many datasets in a uniform way so that they can be swapped out with a single line of code. These datasets can also be merged and filtered to construct specific distributional shifts for studying generalization.

Twitter: @torchxrayvision

Getting started

$ pip install torchxrayvision
import torchxrayvision as xrv import skimage, torch, torchvision # Prepare the image: img = skimage.io.imread("16747_3_1.jpg") img = xrv.datasets.normalize(img, 255) # convert 8-bit image to [-1024, 1024] range img = img.mean(2)[None, ...] # Make single color channel transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),xrv.datasets.XRayResizer(224)]) img = transform(img) img = torch.from_numpy(img) # Load model and process image model = xrv.models.DenseNet(weights="densenet121-res224-all") outputs = model(img[None,...]) # or model.features(img[None,...]) # Print results dict(zip(model.pathologies,outputs[0].detach().numpy())) {'Atelectasis': 0.32797316, 'Consolidation': 0.42933336, 'Infiltration': 0.5316924, 'Pneumothorax': 0.28849724, 'Edema': 0.024142697, 'Emphysema': 0.5011832, 'Fibrosis': 0.51887786, 'Effusion': 0.27805611, 'Pneumonia': 0.18569896, 'Pleural_Thickening': 0.24489835, 'Cardiomegaly': 0.3645515, 'Nodule': 0.68982, 'Mass': 0.6392845, 'Hernia': 0.00993878, 'Lung Lesion': 0.011150705, 'Fracture': 0.51916164, 'Lung Opacity': 0.59073937, 'Enlarged Cardiomediastinum': 0.27218717}

A sample script to process images usings pretrained models is process_image.py

$ python3 process_image.py ../tests/00000001_000.png
{'preds': {'Atelectasis': 0.50500506,
           'Cardiomegaly': 0.6600903,
           'Consolidation': 0.30575264,
           'Edema': 0.274184,
           'Effusion': 0.4026162,
           'Emphysema': 0.5036339,
           'Enlarged Cardiomediastinum': 0.40989172,
           'Fibrosis': 0.53293407,
           'Fracture': 0.32376793,
           'Hernia': 0.011924741,
           'Infiltration': 0.5154413,
           'Lung Lesion': 0.22231922,
           'Lung Opacity': 0.2772148,
           'Mass': 0.32237658,
           'Nodule': 0.5091847,
           'Pleural_Thickening': 0.5102617,
           'Pneumonia': 0.30947986,
           'Pneumothorax': 0.24847917}}

Models (demo notebook)

Specify weights for pretrained models (currently all DenseNet121) Note: Each pretrained model has 18 outputs. The all model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field {dataset}.pathologies on the dataset that corresponds to the weights.

## 224x224 models model = xrv.models.DenseNet(weights="densenet121-res224-all") model = xrv.models.DenseNet(weights="densenet121-res224-rsna") # RSNA Pneumonia Challenge model = xrv.models.DenseNet(weights="densenet121-res224-nih") # NIH chest X-ray8 model = xrv.models.DenseNet(weights="densenet121-res224-pc") # PadChest (University of Alicante) model = xrv.models.DenseNet(weights="densenet121-res224-chex") # CheXpert (Stanford) model = xrv.models.DenseNet(weights="densenet121-res224-mimic_nb") # MIMIC-CXR (MIT) model = xrv.models.DenseNet(weights="densenet121-res224-mimic_ch") # MIMIC-CXR (MIT) # 512x512 models model = xrv.models.ResNet(weights="resnet50-res512-all") # DenseNet121 from JF Healthcare for the CheXpert competition model = xrv.baseline_models.jfhealthcare.DenseNet() # Official Stanford CheXpert model model = xrv.baseline_models.chexpert.DenseNet(weights_zip="chexpert_weights.zip") # Emory HITI lab race prediction model model = xrv.baseline_models.emory_hiti.RaceModel() model.targets -> ["Asian", "Black", "White"] # Riken age prediction model model = xrv.baseline_models.riken.AgeModel()

Benchmarks of the modes are here: BENCHMARKS.md and the performance of some of the models can be seen in this paper arxiv.org/abs/2002.02497.

Autoencoders

You can also load a pre-trained autoencoder that is trained on the PadChest, NIH, CheXpert, and MIMIC datasets.

ae = xrv.autoencoders.ResNetAE(weights="101-elastic") z = ae.encode(image) image2 = ae.decode(z)

Segmentation

You can load pretrained anatomical segmentation models. Demo Notebook

seg_model = xrv.baseline_models.chestx_det.PSPNet() output = seg_model(image) output.shape # [1, 14, 512, 512] seg_model.targets # ['Left Clavicle', 'Right Clavicle', 'Left Scapula', 'Right Scapula', # 'Left Lung', 'Right Lung', 'Left Hilus Pulmonis', 'Right Hilus Pulmonis', # 'Heart', 'Aorta', 'Facies Diaphragmatica', 'Mediastinum', 'Weasand', 'Spine']

Datasets

View docstrings for more detail on each dataset and Demo notebook and Example loading script

transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(), xrv.datasets.XRayResizer(224)]) # RSNA Pneumonia Detection Challenge. https://pubs.rsna.org/doi/full/10.1148/ryai.2019180041 d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="path to stage_2_train_images_jpg", transform=transform) # CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. https://arxiv.org/abs/1901.07031 d_chex = xrv.datasets.CheX_Dataset(imgpath="path to CheXpert-v1.0-small", csvpath="path to CheXpert-v1.0-small/train.csv", transform=transform) # National Institutes of Health ChestX-ray8 dataset. https://arxiv.org/abs/1705.02315 d_nih = xrv.datasets.NIH_Dataset(imgpath="path to NIH images") # A relabelling of a subset of NIH images from: https://pubs.rsna.org/doi/10.1148/radiol.2019191293 d_nih2 = xrv.datasets.NIH_Google_Dataset(imgpath="path to NIH images") # PadChest: A large chest x-ray image dataset with multi-label annotated reports. https://arxiv.org/abs/1901.07441 d_pc = xrv.datasets.PC_Dataset(imgpath="path to image folder") # COVID-19 Image Data Collection. https://arxiv.org/abs/2006.11988 d_covid19 = xrv.datasets.COVID19_Dataset() # specify imgpath and csvpath for the dataset # SIIM Pneumothorax Dataset. https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation d_siim = xrv.datasets.SIIM_Pneumothorax_Dataset(imgpath="dicom-images-train/", csvpath="train-rle.csv") # VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations. https://arxiv.org/abs/2012.15029 d_vin = xrv.datasets.VinBrain_Dataset(imgpath=".../train", csvpath=".../train.csv") # National Library of Medicine Tuberculosis Datasets. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/ d_nlmtb = xrv.datasets.NLMTB_Dataset(imgpath="path to MontgomerySet or ChinaSet_AllFiles")

Dataset fields

Each dataset contains a number of fields. These fields are maintained when xrv.datasets.Subset_Dataset and xrv.datasets.Merge_Dataset are used.

  • .pathologies This field is a list of the pathologies contained in this dataset that will be contained in the .labels field ].

  • .labels This field contains a 1,0, or NaN for each label defined in .pathologies.

  • .csv This field is a pandas DataFrame of the metadata csv file that comes with the data. Each row aligns with the elements of the dataset so indexing using .iloc will work.

If possible, each dataset's .csv will have some common fields of the csv. These will be aligned when The list is as follows:

  • csv.patientid A unique id that will uniqely identify samples in this dataset

  • csv.offset_day_int An integer time offset for the image in the unit of days. This is expected to be for relative times and has no absolute meaning although for some datasets it is the epoch time.

  • csv.age_years The age of the patient in years.

  • csv.sex_male If the patient is male

  • csv.sex_female If the patient is female

Dataset tools

relabel_dataset will align labels to have the same order as the pathologies argument.

xrv.datasets.relabel_dataset(xrv.datasets.default_pathologies , d_nih) # has side effects

specify a subset of views (demo notebook)

d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...", views=["PA","AP","AP Supine"])

specify only 1 image per patient

d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...", unique_patients=True)

obtain summary statistics per dataset

d_chex = xrv.datasets.CheX_Dataset(imgpath="CheXpert-v1.0-small", csvpath="CheXpert-v1.0-small/train.csv", views=["PA","AP"], unique_patients=False) CheX_Dataset num_samples=191010 views=['PA', 'AP'] {'Atelectasis': {0.0: 17621, 1.0: 29718}, 'Cardiomegaly': {0.0: 22645, 1.0: 23384}, 'Consolidation': {0.0: 30463, 1.0: 12982}, 'Edema': {0.0: 29449, 1.0: 49674}, 'Effusion': {0.0: 34376, 1.0: 76894}, 'Enlarged Cardiomediastinum': {0.0: 26527, 1.0: 9186}, 'Fracture': {0.0: 18111, 1.0: 7434}, 'Lung Lesion': {0.0: 17523, 1.0: 7040}, 'Lung Opacity': {0.0: 20165, 1.0: 94207}, 'Pleural Other': {0.0: 17166, 1.0: 2503}, 'Pneumonia': {0.0: 18105, 1.0: 4674}, 'Pneumothorax': {0.0: 54165, 1.0: 17693}, 'Support Devices': {0.0: 21757, 1.0: 99747}}

Pathology masks (demo notebook)

Masks are available in the following datasets:

xrv.datasets.RSNA_Pneumonia_Dataset() # for Lung Opacity xrv.datasets.SIIM_Pneumothorax_Dataset() # for Pneumothorax xrv.datasets.NIH_Dataset() # for Cardiomegaly, Mass, Effusion, ...

Example usage:

d_rsna = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="stage_2_train_images_jpg", views=["PA","AP"], pathology_masks=True) # The has_masks column will let you know if any masks exist for that sample d_rsna.csv.has_masks.value_counts() False 20672 True 6012 # Each sample will have a pathology_masks dictionary where the index # of each pathology will correspond to a mask of that pathology (if it exists). # There may be more than one mask per sample. But only one per pathology. sample["pathology_masks"][d_rsna.pathologies.index("Lung Opacity")]

it also works with data_augmentation if you pass in data_aug=data_transforms to the dataloader. The random seed is matched to align calls for the image and the mask.

Distribution shift tools (demo notebook)

The class xrv.datasets.CovariateDataset takes two datasets and two arrays representing the labels. The samples will be returned with the desired ratio of images from each site. The goal here is to simulate a covariate shift to make a model focus on an incorrect feature. Then the shift can be reversed in the validation data causing a catastrophic failure in generalization performance.

ratio=0.0 means images from d1 will have a positive label ratio=0.5 means images from d1 will have half of the positive labels ratio=1.0 means images from d1 will have no positive label

With any ratio the number of samples returned will be the same.

d = xrv.datasets.CovariateDataset(d1 = # dataset1 with a specific condition d1_target = #target label to predict, d2 = # dataset2 with

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多