torchquantum

torchquantum

快速可扩展的PyTorch量子计算框架

TorchQuantum是基于PyTorch的开源量子计算框架,支持多达30个量子比特的GPU加速模拟。它具有动态计算图、自动梯度计算和批处理模式等特性,适用于量子算法设计、参数化量子电路训练和量子机器学习研究。与同类框架相比,TorchQuantum在GPU支持和张量化处理方面表现出色。

TorchQuantum量子计算PyTorchGPU加速量子电路模拟Github开源项目
<p align="center"> <img src="torchquantum_logo.jpg" alt="torchquantum Logo" width="450"> </p> <h2><p align="center">Quantum Computing in PyTorch</p></h2> <h3><p align="center">Faster, Scalable, Easy Debugging, Easy Deployment on Real Machine</p></h3> <p align="center"> <a href="https://torchquantum.readthedocs.io/"> <img alt="Documentation" src="https://img.shields.io/readthedocs/torchquantum/main"> </a> <a href="https://github.com/mit-han-lab/torchquantum/blob/master/LICENSE"> <img alt="MIT License" src="https://img.shields.io/github/license/mit-han-lab/torchquantum"> </a> <a href="https://join.slack.com/t/torchquantum/shared_invite/zt-1ghuf283a-OtP4mCPJREd~367VX~TaQQ"> <img alt="Chat @ Slack" src="https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack"> </a> <a href="https://discord.gg/VTHZAB5E"> <img alt="Chat @ Discord" src="https://img.shields.io/badge/contact-me-blue?logo=discord&logoColor=white"> </a> <!-- <a href="https://qmlsys.hanruiwang.me"> <img alt="Forum" src="https://img.shields.io/discourse/status?server=https%3A%2F%2Fqmlsys.hanruiwang.me%2F"> </a> --> <a href="https://qmlsys.mit.edu"> <img alt="Website" src="https://img.shields.io/website?up_message=qmlsys&url=https%3A%2F%2Fqmlsys.mit.edu"> </a> <a href="https://pypi.org/project/torchquantum/"> <img alt="Pypi" src="https://img.shields.io/pypi/v/torchquantum"> </a> <a href="https://unitary.fund/"> <img alt="Pypi" src="https://img.shields.io/badge/supported%20by-Unitary%20Fund-green"> </a> </a> <a href="https://pytorch.org/ecosystem/"> <img alt="Pypi" src="https://img.shields.io/badge/integration%20-PyTorch%20Ecosystem-blue"> </a> </a> <a href="https://qiskit.org/ecosystem/"> <img alt="Pypi" src="https://img.shields.io/badge/integration%20-Qiskit%20Ecosystem-blue"> </a> </p> <br />

👋 Welcome

What it is doing

Simulate quantum computations on classical hardware using PyTorch. It supports statevector simulation and pulse simulation on GPUs. It can scale up to the simulation of 30+ qubits with multiple GPUs.

Who will benefit

Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, quantum neural networks.

Differences from Qiskit/Pennylane

Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tersorized processing.

News

  • Torchquantum is used in the winning team for ACM Quantum Computing for Drug Discovery Challenge.
  • Torchquantum is highlighted in UnitaryHack.
  • TorchQuantum received UnitaryFund.
  • TorchQuantum is integrated to IBM Qiskit Ecosystem.
  • TorchQuantum is integrated to PyTorch Ecosystem.
  • v0.1.8 Available!
  • Check the dev branch for new latest features on quantum layers and quantum algorithms.
  • Join our Slack for real time support!
  • Welcome to contribute! Please contact us or post in the Github Issues if you want to have new examples implemented by TorchQuantum or any other questions.
  • Qmlsys website goes online: qmlsys.mit.edu and torchquantum.org

Features

  • Easy construction and simulation of quantum circuits in PyTorch
  • Dynamic computation graph for easy debugging
  • Gradient support via autograd
  • Batch mode inference and training on CPU/GPU
  • Easy deployment on real quantum devices such as IBMQ
  • Easy hybrid classical-quantum model construction
  • (coming soon) pulse-level simulation

Installation

git clone https://github.com/mit-han-lab/torchquantum.git cd torchquantum pip install --editable .

Basic Usage

import torchquantum as tq import torchquantum.functional as tqf qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True) # use device='cuda' for GPU # use qdev.op qdev.h(wires=0) qdev.cnot(wires=[0, 1]) # use tqf tqf.h(qdev, wires=1) tqf.x(qdev, wires=1) # use tq.Operator op = tq.RX(has_params=True, trainable=True, init_params=0.5) op(qdev, wires=0) # print the current state (dynamic computation graph supported) print(qdev) # obtain the qasm string from torchquantum.plugin import op_history2qasm print(op_history2qasm(qdev.n_wires, qdev.op_history)) # measure the state on z basis print(tq.measure(qdev, n_shots=1024)) # obtain the expval on a observable by stochastic sampling (doable on simulator and real quantum hardware) from torchquantum.measurement import expval_joint_sampling expval_sampling = expval_joint_sampling(qdev, 'ZX', n_shots=1024) print(expval_sampling) # obtain the expval on a observable by analytical computation (only doable on classical simulator) from torchquantum.measurement import expval_joint_analytical expval = expval_joint_analytical(qdev, 'ZX') print(expval) # obtain gradients of expval w.r.t. trainable parameters expval[0].backward() print(op.params.grad) # Apply gates to qdev with tq.QuantumModule ops = [ {'name': 'hadamard', 'wires': 0}, {'name': 'cnot', 'wires': [0, 1]}, {'name': 'rx', 'wires': 0, 'params': 0.5, 'trainable': True}, {'name': 'u3', 'wires': 0, 'params': [0.1, 0.2, 0.3], 'trainable': True}, {'name': 'h', 'wires': 1, 'inverse': True} ] qmodule = tq.QuantumModule.from_op_history(ops) qmodule(qdev)
<!-- ## Basic Usage 2 ```python import torchquantum as tq import torchquantum.functional as tqf x = tq.QuantumDevice(n_wires=2) tqf.hadamard(x, wires=0) tqf.x(x, wires=1) tqf.cnot(x, wires=[0, 1]) # print the current state (dynamic computation graph supported) print(x.states) # obtain the classical bitstring distribution print(tq.measure(x, n_shots=2048)) ``` -->

Guide to the examples

We also prepare many example and tutorials using TorchQuantum.

For beginning level, you may check QNN for MNIST, Quantum Convolution (Quanvolution) and Quantum Kernel Method, and Quantum Regression.

For intermediate level, you may check Amplitude Encoding for MNIST, Clifford gate QNN, Save and Load QNN models, PauliSum Operation, How to convert tq to Qiskit.

For expert, you may check Parameter Shift on-chip Training, VQA Gradient Pruning, VQE, VQA for State Prepration, QAOA (Quantum Approximate Optimization Algorithm).

Usage

Construct parameterized quantum circuit models as simple as constructing a normal pytorch model.

import torch.nn as nn import torch.nn.functional as F import torchquantum as tq import torchquantum.functional as tqf class QFCModel(nn.Module): def __init__(self): super().__init__() self.n_wires = 4 self.measure = tq.MeasureAll(tq.PauliZ) self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \ [tqf.rz] * 4 + [tqf.rx] * 4 self.rx0 = tq.RX(has_params=True, trainable=True) self.ry0 = tq.RY(has_params=True, trainable=True) self.rz0 = tq.RZ(has_params=True, trainable=True) self.crx0 = tq.CRX(has_params=True, trainable=True) def forward(self, x): bsz = x.shape[0] # down-sample the image x = F.avg_pool2d(x, 6).view(bsz, 16) # create a quantum device to run the gates qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=bsz, device=x.device) # encode the classical image to quantum domain for k, gate in enumerate(self.encoder_gates): gate(qdev, wires=k % self.n_wires, params=x[:, k]) # add some trainable gates (need to instantiate ahead of time) self.rx0(qdev, wires=0) self.ry0(qdev, wires=1) self.rz0(qdev, wires=3) self.crx0(qdev, wires=[0, 2]) # add some more non-parameterized gates (add on-the-fly) qdev.h(wires=3) qdev.sx(wires=2) qdev.cnot(wires=[3, 0]) qdev.qubitunitary(wires=[1, 2], params=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]]) # perform measurement to get expectations (back to classical domain) x = self.measure(qdev).reshape(bsz, 2, 2) # classification x = x.sum(-1).squeeze() x = F.log_softmax(x, dim=1) return x

VQE Example

Train a quantum circuit to perform VQE task. Quito quantum computer as in simple_vqe.py script:

cd examples/vqe python vqe.py

MNIST Example

Train a quantum circuit to perform MNIST classification task and deploy on the real IBM Quito quantum computer as in mnist_example.py script:

cd examples/mnist python mnist.py

Files

FileDescription
devices.pyQuantumDevice class which stores the statevector
encoding.pyEncoding layers to encode classical values to quantum domain
functional.pyQuantum gate functions
operators.pyQuantum gate classes
layers.pyLayer templates such as RandomLayer
measure.pyMeasurement of quantum states to get classical values
graph.pyQuantum gate graph used in static mode
super_layer.pyLayer templates for SuperCircuits
plugins/qiskit*Convertors and processors for easy deployment on IBMQ
examples/More examples for training QML and VQE models

Coding Style

torchquantum uses pre-commit hooks to ensure Python style consistency and prevent common mistakes in its codebase.

To enable it pre-commit hooks please reproduce:

pip install pre-commit pre-commit install

Papers using TorchQuantum

  • [HPCA'22] [Wang et al., "QuantumNAS: Noise-Adaptive Search for

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多