Simulate quantum computations on classical hardware using PyTorch. It supports statevector simulation and pulse simulation on GPUs. It can scale up to the simulation of 30+ qubits with multiple GPUs.
Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, quantum neural networks.
Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tersorized processing.
git clone https://github.com/mit-han-lab/torchquantum.git cd torchquantum pip install --editable .
<!-- ## Basic Usage 2 ```python import torchquantum as tq import torchquantum.functional as tqf x = tq.QuantumDevice(n_wires=2) tqf.hadamard(x, wires=0) tqf.x(x, wires=1) tqf.cnot(x, wires=[0, 1]) # print the current state (dynamic computation graph supported) print(x.states) # obtain the classical bitstring distribution print(tq.measure(x, n_shots=2048)) ``` -->import torchquantum as tq import torchquantum.functional as tqf qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True) # use device='cuda' for GPU # use qdev.op qdev.h(wires=0) qdev.cnot(wires=[0, 1]) # use tqf tqf.h(qdev, wires=1) tqf.x(qdev, wires=1) # use tq.Operator op = tq.RX(has_params=True, trainable=True, init_params=0.5) op(qdev, wires=0) # print the current state (dynamic computation graph supported) print(qdev) # obtain the qasm string from torchquantum.plugin import op_history2qasm print(op_history2qasm(qdev.n_wires, qdev.op_history)) # measure the state on z basis print(tq.measure(qdev, n_shots=1024)) # obtain the expval on a observable by stochastic sampling (doable on simulator and real quantum hardware) from torchquantum.measurement import expval_joint_sampling expval_sampling = expval_joint_sampling(qdev, 'ZX', n_shots=1024) print(expval_sampling) # obtain the expval on a observable by analytical computation (only doable on classical simulator) from torchquantum.measurement import expval_joint_analytical expval = expval_joint_analytical(qdev, 'ZX') print(expval) # obtain gradients of expval w.r.t. trainable parameters expval[0].backward() print(op.params.grad) # Apply gates to qdev with tq.QuantumModule ops = [ {'name': 'hadamard', 'wires': 0}, {'name': 'cnot', 'wires': [0, 1]}, {'name': 'rx', 'wires': 0, 'params': 0.5, 'trainable': True}, {'name': 'u3', 'wires': 0, 'params': [0.1, 0.2, 0.3], 'trainable': True}, {'name': 'h', 'wires': 1, 'inverse': True} ] qmodule = tq.QuantumModule.from_op_history(ops) qmodule(qdev)
We also prepare many example and tutorials using TorchQuantum.
For beginning level, you may check QNN for MNIST, Quantum Convolution (Quanvolution) and Quantum Kernel Method, and Quantum Regression.
For intermediate level, you may check Amplitude Encoding for MNIST, Clifford gate QNN, Save and Load QNN models, PauliSum Operation, How to convert tq to Qiskit.
For expert, you may check Parameter Shift on-chip Training, VQA Gradient Pruning, VQE, VQA for State Prepration, QAOA (Quantum Approximate Optimization Algorithm).
Construct parameterized quantum circuit models as simple as constructing a normal pytorch model.
import torch.nn as nn import torch.nn.functional as F import torchquantum as tq import torchquantum.functional as tqf class QFCModel(nn.Module): def __init__(self): super().__init__() self.n_wires = 4 self.measure = tq.MeasureAll(tq.PauliZ) self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \ [tqf.rz] * 4 + [tqf.rx] * 4 self.rx0 = tq.RX(has_params=True, trainable=True) self.ry0 = tq.RY(has_params=True, trainable=True) self.rz0 = tq.RZ(has_params=True, trainable=True) self.crx0 = tq.CRX(has_params=True, trainable=True) def forward(self, x): bsz = x.shape[0] # down-sample the image x = F.avg_pool2d(x, 6).view(bsz, 16) # create a quantum device to run the gates qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=bsz, device=x.device) # encode the classical image to quantum domain for k, gate in enumerate(self.encoder_gates): gate(qdev, wires=k % self.n_wires, params=x[:, k]) # add some trainable gates (need to instantiate ahead of time) self.rx0(qdev, wires=0) self.ry0(qdev, wires=1) self.rz0(qdev, wires=3) self.crx0(qdev, wires=[0, 2]) # add some more non-parameterized gates (add on-the-fly) qdev.h(wires=3) qdev.sx(wires=2) qdev.cnot(wires=[3, 0]) qdev.qubitunitary(wires=[1, 2], params=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]]) # perform measurement to get expectations (back to classical domain) x = self.measure(qdev).reshape(bsz, 2, 2) # classification x = x.sum(-1).squeeze() x = F.log_softmax(x, dim=1) return x
Train a quantum circuit to perform VQE task. Quito quantum computer as in simple_vqe.py script:
cd examples/vqe python vqe.py
Train a quantum circuit to perform MNIST classification task and deploy on the real IBM Quito quantum computer as in mnist_example.py script:
cd examples/mnist python mnist.py
File | Description |
---|---|
devices.py | QuantumDevice class which stores the statevector |
encoding.py | Encoding layers to encode classical values to quantum domain |
functional.py | Quantum gate functions |
operators.py | Quantum gate classes |
layers.py | Layer templates such as RandomLayer |
measure.py | Measurement of quantum states to get classical values |
graph.py | Quantum gate graph used in static mode |
super_layer.py | Layer templates for SuperCircuits |
plugins/qiskit* | Convertors and processors for easy deployment on IBMQ |
examples/ | More examples for training QML and VQE models |
torchquantum uses pre-commit hooks to ensure Python style consistency and prevent common mistakes in its codebase.
To enable it pre-commit hooks please reproduce:
pip install pre-commit pre-commit install
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号