torchquantum

torchquantum

快速可扩展的PyTorch量子计算框架

TorchQuantum是基于PyTorch的开源量子计算框架,支持多达30个量子比特的GPU加速模拟。它具有动态计算图、自动梯度计算和批处理模式等特性,适用于量子算法设计、参数化量子电路训练和量子机器学习研究。与同类框架相比,TorchQuantum在GPU支持和张量化处理方面表现出色。

TorchQuantum量子计算PyTorchGPU加速量子电路模拟Github开源项目
<p align="center"> <img src="torchquantum_logo.jpg" alt="torchquantum Logo" width="450"> </p> <h2><p align="center">Quantum Computing in PyTorch</p></h2> <h3><p align="center">Faster, Scalable, Easy Debugging, Easy Deployment on Real Machine</p></h3> <p align="center"> <a href="https://torchquantum.readthedocs.io/"> <img alt="Documentation" src="https://img.shields.io/readthedocs/torchquantum/main"> </a> <a href="https://github.com/mit-han-lab/torchquantum/blob/master/LICENSE"> <img alt="MIT License" src="https://img.shields.io/github/license/mit-han-lab/torchquantum"> </a> <a href="https://join.slack.com/t/torchquantum/shared_invite/zt-1ghuf283a-OtP4mCPJREd~367VX~TaQQ"> <img alt="Chat @ Slack" src="https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack"> </a> <a href="https://discord.gg/VTHZAB5E"> <img alt="Chat @ Discord" src="https://img.shields.io/badge/contact-me-blue?logo=discord&logoColor=white"> </a> <!-- <a href="https://qmlsys.hanruiwang.me"> <img alt="Forum" src="https://img.shields.io/discourse/status?server=https%3A%2F%2Fqmlsys.hanruiwang.me%2F"> </a> --> <a href="https://qmlsys.mit.edu"> <img alt="Website" src="https://img.shields.io/website?up_message=qmlsys&url=https%3A%2F%2Fqmlsys.mit.edu"> </a> <a href="https://pypi.org/project/torchquantum/"> <img alt="Pypi" src="https://img.shields.io/pypi/v/torchquantum"> </a> <a href="https://unitary.fund/"> <img alt="Pypi" src="https://img.shields.io/badge/supported%20by-Unitary%20Fund-green"> </a> </a> <a href="https://pytorch.org/ecosystem/"> <img alt="Pypi" src="https://img.shields.io/badge/integration%20-PyTorch%20Ecosystem-blue"> </a> </a> <a href="https://qiskit.org/ecosystem/"> <img alt="Pypi" src="https://img.shields.io/badge/integration%20-Qiskit%20Ecosystem-blue"> </a> </p> <br />

👋 Welcome

What it is doing

Simulate quantum computations on classical hardware using PyTorch. It supports statevector simulation and pulse simulation on GPUs. It can scale up to the simulation of 30+ qubits with multiple GPUs.

Who will benefit

Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, quantum neural networks.

Differences from Qiskit/Pennylane

Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tersorized processing.

News

  • Torchquantum is used in the winning team for ACM Quantum Computing for Drug Discovery Challenge.
  • Torchquantum is highlighted in UnitaryHack.
  • TorchQuantum received UnitaryFund.
  • TorchQuantum is integrated to IBM Qiskit Ecosystem.
  • TorchQuantum is integrated to PyTorch Ecosystem.
  • v0.1.8 Available!
  • Check the dev branch for new latest features on quantum layers and quantum algorithms.
  • Join our Slack for real time support!
  • Welcome to contribute! Please contact us or post in the Github Issues if you want to have new examples implemented by TorchQuantum or any other questions.
  • Qmlsys website goes online: qmlsys.mit.edu and torchquantum.org

Features

  • Easy construction and simulation of quantum circuits in PyTorch
  • Dynamic computation graph for easy debugging
  • Gradient support via autograd
  • Batch mode inference and training on CPU/GPU
  • Easy deployment on real quantum devices such as IBMQ
  • Easy hybrid classical-quantum model construction
  • (coming soon) pulse-level simulation

Installation

git clone https://github.com/mit-han-lab/torchquantum.git cd torchquantum pip install --editable .

Basic Usage

import torchquantum as tq import torchquantum.functional as tqf qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True) # use device='cuda' for GPU # use qdev.op qdev.h(wires=0) qdev.cnot(wires=[0, 1]) # use tqf tqf.h(qdev, wires=1) tqf.x(qdev, wires=1) # use tq.Operator op = tq.RX(has_params=True, trainable=True, init_params=0.5) op(qdev, wires=0) # print the current state (dynamic computation graph supported) print(qdev) # obtain the qasm string from torchquantum.plugin import op_history2qasm print(op_history2qasm(qdev.n_wires, qdev.op_history)) # measure the state on z basis print(tq.measure(qdev, n_shots=1024)) # obtain the expval on a observable by stochastic sampling (doable on simulator and real quantum hardware) from torchquantum.measurement import expval_joint_sampling expval_sampling = expval_joint_sampling(qdev, 'ZX', n_shots=1024) print(expval_sampling) # obtain the expval on a observable by analytical computation (only doable on classical simulator) from torchquantum.measurement import expval_joint_analytical expval = expval_joint_analytical(qdev, 'ZX') print(expval) # obtain gradients of expval w.r.t. trainable parameters expval[0].backward() print(op.params.grad) # Apply gates to qdev with tq.QuantumModule ops = [ {'name': 'hadamard', 'wires': 0}, {'name': 'cnot', 'wires': [0, 1]}, {'name': 'rx', 'wires': 0, 'params': 0.5, 'trainable': True}, {'name': 'u3', 'wires': 0, 'params': [0.1, 0.2, 0.3], 'trainable': True}, {'name': 'h', 'wires': 1, 'inverse': True} ] qmodule = tq.QuantumModule.from_op_history(ops) qmodule(qdev)
<!-- ## Basic Usage 2 ```python import torchquantum as tq import torchquantum.functional as tqf x = tq.QuantumDevice(n_wires=2) tqf.hadamard(x, wires=0) tqf.x(x, wires=1) tqf.cnot(x, wires=[0, 1]) # print the current state (dynamic computation graph supported) print(x.states) # obtain the classical bitstring distribution print(tq.measure(x, n_shots=2048)) ``` -->

Guide to the examples

We also prepare many example and tutorials using TorchQuantum.

For beginning level, you may check QNN for MNIST, Quantum Convolution (Quanvolution) and Quantum Kernel Method, and Quantum Regression.

For intermediate level, you may check Amplitude Encoding for MNIST, Clifford gate QNN, Save and Load QNN models, PauliSum Operation, How to convert tq to Qiskit.

For expert, you may check Parameter Shift on-chip Training, VQA Gradient Pruning, VQE, VQA for State Prepration, QAOA (Quantum Approximate Optimization Algorithm).

Usage

Construct parameterized quantum circuit models as simple as constructing a normal pytorch model.

import torch.nn as nn import torch.nn.functional as F import torchquantum as tq import torchquantum.functional as tqf class QFCModel(nn.Module): def __init__(self): super().__init__() self.n_wires = 4 self.measure = tq.MeasureAll(tq.PauliZ) self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \ [tqf.rz] * 4 + [tqf.rx] * 4 self.rx0 = tq.RX(has_params=True, trainable=True) self.ry0 = tq.RY(has_params=True, trainable=True) self.rz0 = tq.RZ(has_params=True, trainable=True) self.crx0 = tq.CRX(has_params=True, trainable=True) def forward(self, x): bsz = x.shape[0] # down-sample the image x = F.avg_pool2d(x, 6).view(bsz, 16) # create a quantum device to run the gates qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=bsz, device=x.device) # encode the classical image to quantum domain for k, gate in enumerate(self.encoder_gates): gate(qdev, wires=k % self.n_wires, params=x[:, k]) # add some trainable gates (need to instantiate ahead of time) self.rx0(qdev, wires=0) self.ry0(qdev, wires=1) self.rz0(qdev, wires=3) self.crx0(qdev, wires=[0, 2]) # add some more non-parameterized gates (add on-the-fly) qdev.h(wires=3) qdev.sx(wires=2) qdev.cnot(wires=[3, 0]) qdev.qubitunitary(wires=[1, 2], params=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]]) # perform measurement to get expectations (back to classical domain) x = self.measure(qdev).reshape(bsz, 2, 2) # classification x = x.sum(-1).squeeze() x = F.log_softmax(x, dim=1) return x

VQE Example

Train a quantum circuit to perform VQE task. Quito quantum computer as in simple_vqe.py script:

cd examples/vqe python vqe.py

MNIST Example

Train a quantum circuit to perform MNIST classification task and deploy on the real IBM Quito quantum computer as in mnist_example.py script:

cd examples/mnist python mnist.py

Files

FileDescription
devices.pyQuantumDevice class which stores the statevector
encoding.pyEncoding layers to encode classical values to quantum domain
functional.pyQuantum gate functions
operators.pyQuantum gate classes
layers.pyLayer templates such as RandomLayer
measure.pyMeasurement of quantum states to get classical values
graph.pyQuantum gate graph used in static mode
super_layer.pyLayer templates for SuperCircuits
plugins/qiskit*Convertors and processors for easy deployment on IBMQ
examples/More examples for training QML and VQE models

Coding Style

torchquantum uses pre-commit hooks to ensure Python style consistency and prevent common mistakes in its codebase.

To enable it pre-commit hooks please reproduce:

pip install pre-commit pre-commit install

Papers using TorchQuantum

  • [HPCA'22] [Wang et al., "QuantumNAS: Noise-Adaptive Search for

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多