Simulate quantum computations on classical hardware using PyTorch. It supports statevector simulation and pulse simulation on GPUs. It can scale up to the simulation of 30+ qubits with multiple GPUs.
Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, quantum neural networks.
Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tersorized processing.
git clone https://github.com/mit-han-lab/torchquantum.git cd torchquantum pip install --editable .
<!-- ## Basic Usage 2 ```python import torchquantum as tq import torchquantum.functional as tqf x = tq.QuantumDevice(n_wires=2) tqf.hadamard(x, wires=0) tqf.x(x, wires=1) tqf.cnot(x, wires=[0, 1]) # print the current state (dynamic computation graph supported) print(x.states) # obtain the classical bitstring distribution print(tq.measure(x, n_shots=2048)) ``` -->import torchquantum as tq import torchquantum.functional as tqf qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True) # use device='cuda' for GPU # use qdev.op qdev.h(wires=0) qdev.cnot(wires=[0, 1]) # use tqf tqf.h(qdev, wires=1) tqf.x(qdev, wires=1) # use tq.Operator op = tq.RX(has_params=True, trainable=True, init_params=0.5) op(qdev, wires=0) # print the current state (dynamic computation graph supported) print(qdev) # obtain the qasm string from torchquantum.plugin import op_history2qasm print(op_history2qasm(qdev.n_wires, qdev.op_history)) # measure the state on z basis print(tq.measure(qdev, n_shots=1024)) # obtain the expval on a observable by stochastic sampling (doable on simulator and real quantum hardware) from torchquantum.measurement import expval_joint_sampling expval_sampling = expval_joint_sampling(qdev, 'ZX', n_shots=1024) print(expval_sampling) # obtain the expval on a observable by analytical computation (only doable on classical simulator) from torchquantum.measurement import expval_joint_analytical expval = expval_joint_analytical(qdev, 'ZX') print(expval) # obtain gradients of expval w.r.t. trainable parameters expval[0].backward() print(op.params.grad) # Apply gates to qdev with tq.QuantumModule ops = [ {'name': 'hadamard', 'wires': 0}, {'name': 'cnot', 'wires': [0, 1]}, {'name': 'rx', 'wires': 0, 'params': 0.5, 'trainable': True}, {'name': 'u3', 'wires': 0, 'params': [0.1, 0.2, 0.3], 'trainable': True}, {'name': 'h', 'wires': 1, 'inverse': True} ] qmodule = tq.QuantumModule.from_op_history(ops) qmodule(qdev)
We also prepare many example and tutorials using TorchQuantum.
For beginning level, you may check QNN for MNIST, Quantum Convolution (Quanvolution) and Quantum Kernel Method, and Quantum Regression.
For intermediate level, you may check Amplitude Encoding for MNIST, Clifford gate QNN, Save and Load QNN models, PauliSum Operation, How to convert tq to Qiskit.
For expert, you may check Parameter Shift on-chip Training, VQA Gradient Pruning, VQE, VQA for State Prepration, QAOA (Quantum Approximate Optimization Algorithm).
Construct parameterized quantum circuit models as simple as constructing a normal pytorch model.
import torch.nn as nn import torch.nn.functional as F import torchquantum as tq import torchquantum.functional as tqf class QFCModel(nn.Module): def __init__(self): super().__init__() self.n_wires = 4 self.measure = tq.MeasureAll(tq.PauliZ) self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \ [tqf.rz] * 4 + [tqf.rx] * 4 self.rx0 = tq.RX(has_params=True, trainable=True) self.ry0 = tq.RY(has_params=True, trainable=True) self.rz0 = tq.RZ(has_params=True, trainable=True) self.crx0 = tq.CRX(has_params=True, trainable=True) def forward(self, x): bsz = x.shape[0] # down-sample the image x = F.avg_pool2d(x, 6).view(bsz, 16) # create a quantum device to run the gates qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=bsz, device=x.device) # encode the classical image to quantum domain for k, gate in enumerate(self.encoder_gates): gate(qdev, wires=k % self.n_wires, params=x[:, k]) # add some trainable gates (need to instantiate ahead of time) self.rx0(qdev, wires=0) self.ry0(qdev, wires=1) self.rz0(qdev, wires=3) self.crx0(qdev, wires=[0, 2]) # add some more non-parameterized gates (add on-the-fly) qdev.h(wires=3) qdev.sx(wires=2) qdev.cnot(wires=[3, 0]) qdev.qubitunitary(wires=[1, 2], params=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]]) # perform measurement to get expectations (back to classical domain) x = self.measure(qdev).reshape(bsz, 2, 2) # classification x = x.sum(-1).squeeze() x = F.log_softmax(x, dim=1) return x
Train a quantum circuit to perform VQE task. Quito quantum computer as in simple_vqe.py script:
cd examples/vqe python vqe.py
Train a quantum circuit to perform MNIST classification task and deploy on the real IBM Quito quantum computer as in mnist_example.py script:
cd examples/mnist python mnist.py
| File | Description |
|---|---|
| devices.py | QuantumDevice class which stores the statevector |
| encoding.py | Encoding layers to encode classical values to quantum domain |
| functional.py | Quantum gate functions |
| operators.py | Quantum gate classes |
| layers.py | Layer templates such as RandomLayer |
| measure.py | Measurement of quantum states to get classical values |
| graph.py | Quantum gate graph used in static mode |
| super_layer.py | Layer templates for SuperCircuits |
| plugins/qiskit* | Convertors and processors for easy deployment on IBMQ |
| examples/ | More examples for training QML and VQE models |
torchquantum uses pre-commit hooks to ensure Python style consistency and prevent common mistakes in its codebase.
To enable it pre-commit hooks please reproduce:
pip install pre-commit pre-commit install


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号