torchquantum

torchquantum

快速可扩展的PyTorch量子计算框架

TorchQuantum是基于PyTorch的开源量子计算框架,支持多达30个量子比特的GPU加速模拟。它具有动态计算图、自动梯度计算和批处理模式等特性,适用于量子算法设计、参数化量子电路训练和量子机器学习研究。与同类框架相比,TorchQuantum在GPU支持和张量化处理方面表现出色。

TorchQuantum量子计算PyTorchGPU加速量子电路模拟Github开源项目
<p align="center"> <img src="torchquantum_logo.jpg" alt="torchquantum Logo" width="450"> </p> <h2><p align="center">Quantum Computing in PyTorch</p></h2> <h3><p align="center">Faster, Scalable, Easy Debugging, Easy Deployment on Real Machine</p></h3> <p align="center"> <a href="https://torchquantum.readthedocs.io/"> <img alt="Documentation" src="https://img.shields.io/readthedocs/torchquantum/main"> </a> <a href="https://github.com/mit-han-lab/torchquantum/blob/master/LICENSE"> <img alt="MIT License" src="https://img.shields.io/github/license/mit-han-lab/torchquantum"> </a> <a href="https://join.slack.com/t/torchquantum/shared_invite/zt-1ghuf283a-OtP4mCPJREd~367VX~TaQQ"> <img alt="Chat @ Slack" src="https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack"> </a> <a href="https://discord.gg/VTHZAB5E"> <img alt="Chat @ Discord" src="https://img.shields.io/badge/contact-me-blue?logo=discord&logoColor=white"> </a> <!-- <a href="https://qmlsys.hanruiwang.me"> <img alt="Forum" src="https://img.shields.io/discourse/status?server=https%3A%2F%2Fqmlsys.hanruiwang.me%2F"> </a> --> <a href="https://qmlsys.mit.edu"> <img alt="Website" src="https://img.shields.io/website?up_message=qmlsys&url=https%3A%2F%2Fqmlsys.mit.edu"> </a> <a href="https://pypi.org/project/torchquantum/"> <img alt="Pypi" src="https://img.shields.io/pypi/v/torchquantum"> </a> <a href="https://unitary.fund/"> <img alt="Pypi" src="https://img.shields.io/badge/supported%20by-Unitary%20Fund-green"> </a> </a> <a href="https://pytorch.org/ecosystem/"> <img alt="Pypi" src="https://img.shields.io/badge/integration%20-PyTorch%20Ecosystem-blue"> </a> </a> <a href="https://qiskit.org/ecosystem/"> <img alt="Pypi" src="https://img.shields.io/badge/integration%20-Qiskit%20Ecosystem-blue"> </a> </p> <br />

👋 Welcome

What it is doing

Simulate quantum computations on classical hardware using PyTorch. It supports statevector simulation and pulse simulation on GPUs. It can scale up to the simulation of 30+ qubits with multiple GPUs.

Who will benefit

Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, quantum neural networks.

Differences from Qiskit/Pennylane

Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tersorized processing.

News

  • Torchquantum is used in the winning team for ACM Quantum Computing for Drug Discovery Challenge.
  • Torchquantum is highlighted in UnitaryHack.
  • TorchQuantum received UnitaryFund.
  • TorchQuantum is integrated to IBM Qiskit Ecosystem.
  • TorchQuantum is integrated to PyTorch Ecosystem.
  • v0.1.8 Available!
  • Check the dev branch for new latest features on quantum layers and quantum algorithms.
  • Join our Slack for real time support!
  • Welcome to contribute! Please contact us or post in the Github Issues if you want to have new examples implemented by TorchQuantum or any other questions.
  • Qmlsys website goes online: qmlsys.mit.edu and torchquantum.org

Features

  • Easy construction and simulation of quantum circuits in PyTorch
  • Dynamic computation graph for easy debugging
  • Gradient support via autograd
  • Batch mode inference and training on CPU/GPU
  • Easy deployment on real quantum devices such as IBMQ
  • Easy hybrid classical-quantum model construction
  • (coming soon) pulse-level simulation

Installation

git clone https://github.com/mit-han-lab/torchquantum.git cd torchquantum pip install --editable .

Basic Usage

import torchquantum as tq import torchquantum.functional as tqf qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True) # use device='cuda' for GPU # use qdev.op qdev.h(wires=0) qdev.cnot(wires=[0, 1]) # use tqf tqf.h(qdev, wires=1) tqf.x(qdev, wires=1) # use tq.Operator op = tq.RX(has_params=True, trainable=True, init_params=0.5) op(qdev, wires=0) # print the current state (dynamic computation graph supported) print(qdev) # obtain the qasm string from torchquantum.plugin import op_history2qasm print(op_history2qasm(qdev.n_wires, qdev.op_history)) # measure the state on z basis print(tq.measure(qdev, n_shots=1024)) # obtain the expval on a observable by stochastic sampling (doable on simulator and real quantum hardware) from torchquantum.measurement import expval_joint_sampling expval_sampling = expval_joint_sampling(qdev, 'ZX', n_shots=1024) print(expval_sampling) # obtain the expval on a observable by analytical computation (only doable on classical simulator) from torchquantum.measurement import expval_joint_analytical expval = expval_joint_analytical(qdev, 'ZX') print(expval) # obtain gradients of expval w.r.t. trainable parameters expval[0].backward() print(op.params.grad) # Apply gates to qdev with tq.QuantumModule ops = [ {'name': 'hadamard', 'wires': 0}, {'name': 'cnot', 'wires': [0, 1]}, {'name': 'rx', 'wires': 0, 'params': 0.5, 'trainable': True}, {'name': 'u3', 'wires': 0, 'params': [0.1, 0.2, 0.3], 'trainable': True}, {'name': 'h', 'wires': 1, 'inverse': True} ] qmodule = tq.QuantumModule.from_op_history(ops) qmodule(qdev)
<!-- ## Basic Usage 2 ```python import torchquantum as tq import torchquantum.functional as tqf x = tq.QuantumDevice(n_wires=2) tqf.hadamard(x, wires=0) tqf.x(x, wires=1) tqf.cnot(x, wires=[0, 1]) # print the current state (dynamic computation graph supported) print(x.states) # obtain the classical bitstring distribution print(tq.measure(x, n_shots=2048)) ``` -->

Guide to the examples

We also prepare many example and tutorials using TorchQuantum.

For beginning level, you may check QNN for MNIST, Quantum Convolution (Quanvolution) and Quantum Kernel Method, and Quantum Regression.

For intermediate level, you may check Amplitude Encoding for MNIST, Clifford gate QNN, Save and Load QNN models, PauliSum Operation, How to convert tq to Qiskit.

For expert, you may check Parameter Shift on-chip Training, VQA Gradient Pruning, VQE, VQA for State Prepration, QAOA (Quantum Approximate Optimization Algorithm).

Usage

Construct parameterized quantum circuit models as simple as constructing a normal pytorch model.

import torch.nn as nn import torch.nn.functional as F import torchquantum as tq import torchquantum.functional as tqf class QFCModel(nn.Module): def __init__(self): super().__init__() self.n_wires = 4 self.measure = tq.MeasureAll(tq.PauliZ) self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \ [tqf.rz] * 4 + [tqf.rx] * 4 self.rx0 = tq.RX(has_params=True, trainable=True) self.ry0 = tq.RY(has_params=True, trainable=True) self.rz0 = tq.RZ(has_params=True, trainable=True) self.crx0 = tq.CRX(has_params=True, trainable=True) def forward(self, x): bsz = x.shape[0] # down-sample the image x = F.avg_pool2d(x, 6).view(bsz, 16) # create a quantum device to run the gates qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=bsz, device=x.device) # encode the classical image to quantum domain for k, gate in enumerate(self.encoder_gates): gate(qdev, wires=k % self.n_wires, params=x[:, k]) # add some trainable gates (need to instantiate ahead of time) self.rx0(qdev, wires=0) self.ry0(qdev, wires=1) self.rz0(qdev, wires=3) self.crx0(qdev, wires=[0, 2]) # add some more non-parameterized gates (add on-the-fly) qdev.h(wires=3) qdev.sx(wires=2) qdev.cnot(wires=[3, 0]) qdev.qubitunitary(wires=[1, 2], params=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]]) # perform measurement to get expectations (back to classical domain) x = self.measure(qdev).reshape(bsz, 2, 2) # classification x = x.sum(-1).squeeze() x = F.log_softmax(x, dim=1) return x

VQE Example

Train a quantum circuit to perform VQE task. Quito quantum computer as in simple_vqe.py script:

cd examples/vqe python vqe.py

MNIST Example

Train a quantum circuit to perform MNIST classification task and deploy on the real IBM Quito quantum computer as in mnist_example.py script:

cd examples/mnist python mnist.py

Files

FileDescription
devices.pyQuantumDevice class which stores the statevector
encoding.pyEncoding layers to encode classical values to quantum domain
functional.pyQuantum gate functions
operators.pyQuantum gate classes
layers.pyLayer templates such as RandomLayer
measure.pyMeasurement of quantum states to get classical values
graph.pyQuantum gate graph used in static mode
super_layer.pyLayer templates for SuperCircuits
plugins/qiskit*Convertors and processors for easy deployment on IBMQ
examples/More examples for training QML and VQE models

Coding Style

torchquantum uses pre-commit hooks to ensure Python style consistency and prevent common mistakes in its codebase.

To enable it pre-commit hooks please reproduce:

pip install pre-commit pre-commit install

Papers using TorchQuantum

  • [HPCA'22] [Wang et al., "QuantumNAS: Noise-Adaptive Search for

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多