ISP-Guide

ISP-Guide

图像信号处理技术与应用全面指南

本指南全面介绍图像信号处理(ISP)技术,涵盖应用、库和工具。内容包括机器学习、深度学习、计算机视觉和LiDAR等相关领域,并提供丰富的学习资源和开发工具。适合初学者和有经验开发人员深入学习ISP知识,提升相关技能。

图像信号处理ISP数字信号处理机器学习计算机视觉Github开源项目
<h1 align="center"> <img src="https://user-images.githubusercontent.com/45159366/134823726-37092704-e401-457e-82c5-e24c78475635.png"> <br /> Image Signal Processing (ISP) Guide </h1> <a href="https://github.com/mikeroyal?tab=followers"> <img alt="followers" title="Follow me for Updates" src="https://custom-icon-badges.demolab.com/github/followers/mikeroyal?color=236ad3&labelColor=1155ba&style=for-the-badge&logo=person-add&label=Follow&logoColor=white"/></a>

Maintenance Last-Commit

A guide covering Image Signal Processing (ISP) including the applications, libraries and tools that will make you a better and more efficient Image Signal Processing (ISP) development.

Note: You can easily convert this markdown file to a PDF in VSCode using this handy extension Markdown PDF.

<p align="center"> <img src="https://user-images.githubusercontent.com/45159366/134823728-48c13a29-d198-46bb-8192-8e68bddbc0af.png"> <br /> </p> <p align="center"> <img src="https://user-images.githubusercontent.com/45159366/134823733-028ab097-c5b6-4ea2-982c-09fa8a6fe3bd.png"> <br /> </p>

Architectural Analysis of a Baseline ISP Pipeline. Source: SpringerLink

Table of Contents

  1. Image Signal Processing(ISP) Learning Resources

  2. Image Signal Processing(ISP) Tools, Libraries, and Frameworks

  3. Digital Signal Processing (DSP) Development

  4. Machine Learning

  5. Algorithms

  6. Deep Learning Development

  7. Reinforcement Learning Development

  8. Computer Vision Development

  9. Photogrammetry Development

  10. LiDAR Development

  11. Bioinformatics

  12. Augmented Reality (AR) & Virtual Reality (VR) Tools and Frameworks

  13. Game Development

  14. CUDA Development

  15. MATLAB Development

  16. C/C++ Development

  17. Java Development

  18. Python Development

  19. Scala Development

  20. R Development

ISP Learning Resources

Back to the Top

Image Signal Processing (ISP) is the processs of converting an image into digital form by performing operations like noise reduction, auto exposure, autofocus, auto white balance, HDR correction, and image sharpening with a Specialized type of media processor.

Developer Resources

Courses

ISP Tools, Libraries, and Frameworks

Back to the Top

CCD(charge coupled device) is a semiconductor image sensor used in digital cameras to convert light into electrical signals. CCD Sensors are made up of tiny elements known as pixels with expressions such as 6 MP(megapixel) or 12 MP(megapixel) refering to the number of pixels comprising the CCD Sensors of a camera. With each pixel there is a tiny photodiode that is sensitive to light(photon) and becomes electrically charged in accordance with the strength of light it captures.

CMOS(Complementary Metal Oxide Semiconductor) sensors are semiconductor image sensors that convert light into electrical signals. It includes features such as timing logic, exposure control, analog-to-digital conversion, shuttering, white balance, gain adjustment, and initial image processing algorithms. CMOS sensors contain rows of photodiodes coupled with individual amplifiers to amplify the electric signal from the photodiodes. This not only enables CMOS sensors to operate on less electrical power than CCDs, but also enables speedier and easier reading of electrical charges at a relatively low-cost.

<p align="center"> <img src="https://user-images.githubusercontent.com/45159366/126912536-fba83d70-3abb-464e-8ad6-1c109471a03f.png"> <br /> </p>

Sensors from Alps Alpine. Source: Alps Alpine

<p align="center"> <img src="https://user-images.githubusercontent.com/45159366/126912537-82a856cb-9d4c-48a8-9d35-13a760198ddb.png"> <br /> </p>

Different Types of Sensors. Source: electronicshub

Signal Processing Toolbox™ is a tool that provides functions and apps to analyze, preprocess, and extract features from uniformly and nonuniformly sampled signals. The toolbox includes tools for filter design and analysis, resampling, smoothing, detrending, and power spectrum estimation. The toolbox also provides functionality for extracting features like changepoints and envelopes, finding peaks and signal patterns, quantifying signal similarities, and performing measurements such as SNR and distortion.

Embedded Coder® is a tool that generates readable, compact, and fast C and C++ code for embedded processors used in mass production. It extends MATLAB Coder™ and Simulink Coder™ with advanced optimizations for precise control of the generated functions, files, and data. These optimizations improve code efficiency and facilitate integration with legacy code, data types, and calibration parameters.

Phased Array System Toolbox™ is a tool that provides algorithms and apps for designing and simulating sensor array and beamforming systems in wireless communication, radar, sonar, acoustic, and medical imaging applications. You can model and analyze the behavior of active and passive arrays, including subarrays and arbitrary geometries.

Radar Toolbox™ is a tool that includes algorithms and tools for designing, simulating, analyzing, and testing multifunction radar systems. Reference examples provide a starting point for implementing airborne, ground-based, shipborne, and automotive radar systems.

Audio Toolbox™ is a tool that provides tools for audio processing, speech analysis, and acoustic measurement. It includes algorithms for processing audio signals such as equalization and time stretching, estimating acoustic signal metrics such as loudness and sharpness, and extracting audio features such as MFCC and pitch. It also provides advanced machine learning models, including i-vectors, and pretrained deep learning networks, including VGGish and CREPE.

Wavelet Toolbox™ is a tool that provides functions and apps for analyzing and synthesizing signals and images. The toolbox includes algorithms for continuous wavelet analysis, wavelet coherence, synchrosqueezing, and data-adaptive time-frequency analysis.

RF Toolbox™ is a tool that provides functions, objects, and apps for designing, modeling, analyzing, and visualizing networks of radio frequency (RF) components. It supports wireless communications, radar, and signal integrity applications.

RF Blockset™ is a tool that provides a Simulink® model library and simulation engine for designing RF communications and radar systems. The RF Blockset lets you simulate RF transceivers and front-ends. You can model nonlinear RF amplifiers to estimate gain, noise, even-order, and odd-order intermodulation distortion, including memory effects. For RF mixers, you can predict image rejection, reciprocal mixing, local oscillator phase noise, and DC offset.

Mixed-Signal Blockset™ is a tool that provides models of components and impairments, analysis tools, and test benches for designing and verifying mixed-signal integrated circuits (ICs).

Python Imaging Library (PIL) is a library provides extensive file format support, an efficient internal representation, and fairly powerful image processing capabilities to your Python interpreter.

scikit-image is a tool for Image processing in Python.

Imaginary is a fast, simple, scalable, Docker-ready HTTP microservice for high-level image processing.

H.264(AVC) is a video compression standard based on block-oriented and motion-compensated integer-DCT coding that defines multiple profiles (tools) and levels (max bitrates and resolutions) with support up to 8K.

H.265(HEVC) is a video compression standard that is the successor to H.264(AVC). It offers a 25% to 50% better data compression at the same level of video quality, or improved video quality at the same bit-rate.

FFmpeg is a leading multimedia framework that can decode, encode, transcode, mux, demux, stream, filter and play pretty much anything that humans and machines have created. It supports the most obscure ancient formats up to the cutting edge ones on multiple platforms such as Windows, macOS, and Linux.

Apple ProRes is a codec technology developed by Apple for high-quality & high-performance editing in Final Cut Pro that supports up to 8K.

Logic Pro is a digital audio workstation (DAW) and MIDI sequencer software application for macOS.

HTTP Live Streaming (HLS) is a communications protocol developed by Apple that sends live and on‐demand audio and video to iPhone, iPad, Mac, Apple Watch, Apple TV, and PC.

Dynamic Adaptive Streaming over HTTP (DASH) is an adaptive streaming protocol that allows for a video stream to switch between bit rates on the basis of network performance, in order to keep a video playing.

OpenMAX™ is a cross-platform API that provides comprehensive streaming media codec and application portability by enabling accelerated multimedia components to be developed, integrated and programmed across multiple operating systems and silicon platforms.

GStreamer is a library for constructing graphs of media-handling components. The applications it supports range from simple Ogg/Vorbis playback, audio/video streaming to complex audio (mixing) and video (non-linear editing) processing. Applications can take advantage of advances in codec and filter technology transparently.

Media Source Extensions (MSE) is a W3C specification that allows JavaScript to send byte streams to media codecs within Web browsers that support HTML5 video and audio. Also, this allows the implementation of client-side prefetching and buffering code for streaming media entirely in JavaScript.

NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications.

OpenCV is a highly optimized library with focus on real-time computer vision applications. The C++, Python, and Java interfaces support Linux, MacOS, Windows, iOS, and Android.

Scikit-Learn is a Python module for machine learning built on top of SciPy, NumPy, and matplotlib, making it easier to apply robust and simple implementations of many popular machine learning algorithms.

Pillow is the friendly PIL(Python Imaging Library) fork. The Python Imaging Library adds image processing capabilities to your Python interpreter. Including extensive file format support, an efficient internal representation, and fairly powerful image processing capabilities.

CuPy is an open-source array library accelerated with NVIDIA CUDA. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

Open Neural Network Exchange(ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types.

Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines. Support for Python, R, Julia, Scala, Go, Javascript and more.

AutoGluon is toolkit for Deep learning that automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy deep learning models on tabular, image, and text data.

Anaconda is a very popular Data Science platform for machine learning and deep learning that enables users to develop models, train them, and deploy them.

PlaidML is an advanced and portable tensor compiler for enabling deep learning on laptops, embedded devices, or other devices where the available computing hardware is not well supported or the available software stack contains unpalatable license restrictions.

DSP Development

Back to the Top

<p align="center"> <img src="https://user-images.githubusercontent.com/45159366/130368423-65b10b6e-941e-4427-b10e-4c92e239bd1b.png"> <br /> </p>

Digital Signal Processing(DSP) Learning Resources

[Digital Signal Processing

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多