Azure Cloud Advocates at Microsoft are pleased to offer a 10-week, 20-lesson curriculum all about Data Science. Each lesson includes pre-lesson and post-lesson quizzes, written instructions to complete the lesson, a solution, and an assignment. Our project-based pedagogy allows you to learn while building, a proven way for new skills to 'stick'.
Hearty thanks to our authors: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.
🙏 Special thanks 🙏 to our Microsoft Student Ambassador authors, reviewers and content contributors, notably Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar , Vidushi Gupta, Jasleen Sondhi
![]() |
|---|
| Data Science For Beginners - Sketchnote by @nitya |
We just released a 12 lesson curriculum on generative AI. Come learn things like:
As usual, there's a lesson, assignments to complete, knowledge checks and challenges.
Check it out:
Get started with the following resources:
Teachers: we have included some suggestions on how to use this curriculum. We'd love your feedback in our discussion forum!
Students: to use this curriculum on your own, fork the entire repo and complete the exercises on your own, starting with a pre-lecture quiz. Then read the lecture and complete the rest of the activities. Try to create the projects by comprehending the lessons rather than copying the solution code; however, that code is available in the /solutions folders in each project-oriented lesson. Another idea would be to form a study group with friends and go through the content together. For further study, we recommend Microsoft Learn.
Gif by Mohit Jaisal
🎥 Click the image above for a video about the project the folks who created it!
We have chosen two pedagogical tenets while building this curriculum: ensuring that it is project-based and that it includes frequent quizzes. By the end of this series, students will have learned basic principles of data science, including ethical concepts, data preparation, different ways of working with data, data visualization, data analysis, real-world use cases of data science, and more.
In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 10 week cycle.
Find our Code of Conduct, Contributing, Translation guidelines. We welcome your constructive feedback!
A note about quizzes: All quizzes are contained in this app, for 40 total quizzes of three questions each. They are linked from within the lessons, but the quiz app can be run locally; follow the instruction in the
quiz-appfolder. They are gradually being localized.
![]() |
|---|
| Data Science For Beginners: Roadmap - Sketchnote by @nitya |
| Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author |
|---|---|---|---|---|---|
| 01 | Defining Data Science | Introduction | Learn the basic concepts behind data science and how it’s related to artificial intelligence, machine learning, and big data. | lesson video | Dmitry |
| 02 | Data Science Ethics | Introduction | Data Ethics Concepts, Challenges & Frameworks. | lesson | Nitya |
| 03 | Defining Data | Introduction | How data is classified and its common sources. | lesson | Jasmine |
| 04 | Introduction to Statistics & Probability | Introduction | The mathematical techniques of probability and statistics to understand data. | lesson video | Dmitry |
| 05 | Working with Relational Data | Working With Data | Introduction to relational data and the basics of exploring and analyzing relational data with the Structured Query Language, also known as SQL (pronounced “see-quell”). | lesson | Christopher |
| 06 | Working with NoSQL Data | Working With Data | Introduction to non-relational data, its various types and the basics of exploring and analyzing document databases. | lesson | Jasmine |
| 07 | Working with Python | Working With Data | Basics of using Python for data exploration with libraries such as Pandas. Foundational understanding of Python programming is recommended. | lesson video | Dmitry |
| 08 | Data Preparation | Working With Data | Topics on data techniques for cleaning and transforming the data to handle challenges of missing, inaccurate, or incomplete data. | lesson | Jasmine |
| 09 | Visualizing Quantities | Data Visualization | Learn how to use Matplotlib to visualize bird data 🦆 | lesson | Jen |
| 10 | Visualizing Distributions of Data | Data Visualization | Visualizing observations and trends within an interval. | lesson | Jen |
| 11 | Visualizing Proportions | Data Visualization | Visualizing discrete and grouped percentages. | lesson | Jen |
| 12 | Visualizing Relationships | Data Visualization | Visualizing connections and correlations between sets of data and their variables. | lesson | Jen |
| 13 | Meaningful Visualizations | Data Visualization | Techniques and guidance for making your visualizations valuable for effective problem solving and insights. | lesson | Jen |
| 14 | Introduction to the Data Science lifecycle | Lifecycle | Introduction to the data science lifecycle and its first step of acquiring and extracting data. | lesson | Jasmine |
| 15 | Analyzing | Lifecycle | This phase of the data science lifecycle focuses on techniques to analyze data. | lesson | Jasmine |
| 16 | Communication | Lifecycle | This phase of the data science lifecycle focuses on presenting the insights from the data in a way that makes it easier for decision makers to understand. | lesson | Jalen |
| 17 | Data Science in the Cloud | Cloud Data | This series of lessons introduces data science in the cloud and its benefits. | lesson | Tiffany and Maud |
| 18 | Data Science in the Cloud | Cloud Data | Training models using Low Code tools. | lesson | Tiffany and Maud |
| 19 | Data Science in the Cloud | Cloud Data | Deploying models with Azure Machine Learning Studio. | lesson | Tiffany and Maud |
| 20 | Data Science in the Wild | In the Wild | Data science driven projects in the real world. | lesson | Nitya |
Follow these steps to open this sample in a Codespace:
Follow these steps to open this repo in a container using your local machine and VSCode using the VS Code Remote - Containers extension:
To use this repository, you can either open the repository in an isolated Docker volume:
Note: Under the hood, this will use the Remote-Containers: Clone Repository in Container Volume... command to clone the source code in a Docker volume instead of the local filesystem. Volumes are the preferred mechanism for persisting container data.
Or open a locally cloned or downloaded version of the repository:


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号