Azure Cloud Advocates at Microsoft are pleased to offer a 10-week, 20-lesson curriculum all about Data Science. Each lesson includes pre-lesson and post-lesson quizzes, written instructions to complete the lesson, a solution, and an assignment. Our project-based pedagogy allows you to learn while building, a proven way for new skills to 'stick'.
Hearty thanks to our authors: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.
🙏 Special thanks 🙏 to our Microsoft Student Ambassador authors, reviewers and content contributors, notably Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar , Vidushi Gupta, Jasleen Sondhi
![]() |
---|
Data Science For Beginners - Sketchnote by @nitya |
We just released a 12 lesson curriculum on generative AI. Come learn things like:
As usual, there's a lesson, assignments to complete, knowledge checks and challenges.
Check it out:
Get started with the following resources:
Teachers: we have included some suggestions on how to use this curriculum. We'd love your feedback in our discussion forum!
Students: to use this curriculum on your own, fork the entire repo and complete the exercises on your own, starting with a pre-lecture quiz. Then read the lecture and complete the rest of the activities. Try to create the projects by comprehending the lessons rather than copying the solution code; however, that code is available in the /solutions folders in each project-oriented lesson. Another idea would be to form a study group with friends and go through the content together. For further study, we recommend Microsoft Learn.
Gif by Mohit Jaisal
🎥 Click the image above for a video about the project the folks who created it!
We have chosen two pedagogical tenets while building this curriculum: ensuring that it is project-based and that it includes frequent quizzes. By the end of this series, students will have learned basic principles of data science, including ethical concepts, data preparation, different ways of working with data, data visualization, data analysis, real-world use cases of data science, and more.
In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 10 week cycle.
Find our Code of Conduct, Contributing, Translation guidelines. We welcome your constructive feedback!
A note about quizzes: All quizzes are contained in this app, for 40 total quizzes of three questions each. They are linked from within the lessons, but the quiz app can be run locally; follow the instruction in the
quiz-app
folder. They are gradually being localized.
![]() |
---|
Data Science For Beginners: Roadmap - Sketchnote by @nitya |
Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author |
---|---|---|---|---|---|
01 | Defining Data Science | Introduction | Learn the basic concepts behind data science and how it’s related to artificial intelligence, machine learning, and big data. | lesson video | Dmitry |
02 | Data Science Ethics | Introduction | Data Ethics Concepts, Challenges & Frameworks. | lesson | Nitya |
03 | Defining Data | Introduction | How data is classified and its common sources. | lesson | Jasmine |
04 | Introduction to Statistics & Probability | Introduction | The mathematical techniques of probability and statistics to understand data. | lesson video | Dmitry |
05 | Working with Relational Data | Working With Data | Introduction to relational data and the basics of exploring and analyzing relational data with the Structured Query Language, also known as SQL (pronounced “see-quell”). | lesson | Christopher |
06 | Working with NoSQL Data | Working With Data | Introduction to non-relational data, its various types and the basics of exploring and analyzing document databases. | lesson | Jasmine |
07 | Working with Python | Working With Data | Basics of using Python for data exploration with libraries such as Pandas. Foundational understanding of Python programming is recommended. | lesson video | Dmitry |
08 | Data Preparation | Working With Data | Topics on data techniques for cleaning and transforming the data to handle challenges of missing, inaccurate, or incomplete data. | lesson | Jasmine |
09 | Visualizing Quantities | Data Visualization | Learn how to use Matplotlib to visualize bird data 🦆 | lesson | Jen |
10 | Visualizing Distributions of Data | Data Visualization | Visualizing observations and trends within an interval. | lesson | Jen |
11 | Visualizing Proportions | Data Visualization | Visualizing discrete and grouped percentages. | lesson | Jen |
12 | Visualizing Relationships | Data Visualization | Visualizing connections and correlations between sets of data and their variables. | lesson | Jen |
13 | Meaningful Visualizations | Data Visualization | Techniques and guidance for making your visualizations valuable for effective problem solving and insights. | lesson | Jen |
14 | Introduction to the Data Science lifecycle | Lifecycle | Introduction to the data science lifecycle and its first step of acquiring and extracting data. | lesson | Jasmine |
15 | Analyzing | Lifecycle | This phase of the data science lifecycle focuses on techniques to analyze data. | lesson | Jasmine |
16 | Communication | Lifecycle | This phase of the data science lifecycle focuses on presenting the insights from the data in a way that makes it easier for decision makers to understand. | lesson | Jalen |
17 | Data Science in the Cloud | Cloud Data | This series of lessons introduces data science in the cloud and its benefits. | lesson | Tiffany and Maud |
18 | Data Science in the Cloud | Cloud Data | Training models using Low Code tools. | lesson | Tiffany and Maud |
19 | Data Science in the Cloud | Cloud Data | Deploying models with Azure Machine Learning Studio. | lesson | Tiffany and Maud |
20 | Data Science in the Wild | In the Wild | Data science driven projects in the real world. | lesson | Nitya |
Follow these steps to open this sample in a Codespace:
Follow these steps to open this repo in a container using your local machine and VSCode using the VS Code Remote - Containers extension:
To use this repository, you can either open the repository in an isolated Docker volume:
Note: Under the hood, this will use the Remote-Containers: Clone Repository in Container Volume... command to clone the source code in a Docker volume instead of the local filesystem. Volumes are the preferred mechanism for persisting container data.
Or open a locally cloned or downloaded version of the repository:
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号