Awesome-3D-AIGC

Awesome-3D-AIGC

3D生成AI前沿资源与研究综述

该项目汇集3D人工智能生成内容(AIGC)领域的最新论文和开源资源,涵盖文本到3D生成、图像到3D生成、3D编辑、人体头像生成等多个研究方向。项目提供开源实现、数据集和教程视频等实用资源,帮助研究者和开发者跟踪3D AIGC技术的最新进展,为相关创新和应用提供参考。

3D AIGC生成式AI深度学习3D建模计算机视觉Github开源项目

Awesome 3D AIGC Resources

A curated list of papers and open-source resources focused on 3D AIGC, intended to keep pace with the anticipated surge of research in the coming months. If you have any additions or suggestions, feel free to contribute. Additional resources like blog posts, videos, etc. are also welcome.

<p align="center"> <img alt="GitHub latest commit" src="https://img.shields.io/github/last-commit/mdyao/Awesome-3D-AIGC"> <img alt="GitHub stars" src="https://img.shields.io/github/stars/mdyao/Awesome-3D-AIGC?color=0088ff" /> <a href="https://github.com/mdyao/Awesome-3D-AIGC"><img src="https://img.shields.io/badge/Awesome-3DAIGC-orange"/></a> <a href="https://hits.seeyoufarm.com"><img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2Fmdyao%2FAwesome-3D-AIGC%2F&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false"/></a> </p>

Table of contents

<details span> <summary><b>Update Log:</b></summary> <be>

Mar. 4, 2024: Update several CVPR 2024 papers.

Jan 23, 2024: Update several ICLR 2024 papers.

Jan 19, 2024: Update several ICLR 2024 papers.

Jan 11, 2024: Add AGG and recent papers.

Jan 10, 2024: Add DreamGaussian (3D version) and several avatar papers.

Jan 6, 2024: Add recent papers.

Jan 2, 2024: Add papers to image to 3d generation.

Dec 29, 2023: Contribute to the section on text-to-3d by adding new papers with their publication years.

Dec 27, 2023: Initial list with first 15 papers.

</details> <be> <div align=center><img src="https://github.com/mdyao/Awesome-3D-AIGC/assets/33108887/2bee41c0-b19c-4047-ae26-02ca2af2c38f"/></div>

Survey:

1. Generative AI meets 3D: A Survey on Text-to-3D in AIGC Era [arxiv 2023.05]

Authors: Chenghao Li, Chaoning Zhang, Atish Waghwase, Lik-Hang Lee, Francois Rameau, Yang Yang, Sung-Ho Bae, Choong Seon Hong

<details span> <summary><b>Abstract</b></summary> Generative AI (AIGC, a.k.a. AI generated content) has made remarkable progress in the past few years, among which text-guided content generation is the most practical one since it enables the interaction between human instruction and AIGC. Due to the development in text-to-image as well 3D modeling technologies (like NeRF), text-to-3D has become a newly emerging yet highly active research field. Our work conducts the first yet comprehensive survey on text-to-3D to help readers interested in this direction quickly catch up with its fast development. First, we introduce 3D data representations, including both Euclidean data and non-Euclidean data. On top of that, we introduce various foundation technologies as well as summarize how recent works combine those foundation technologies to realize satisfactory text-to-3D. Moreover, we summarize how text-to-3D technology is used in various applications, including avatar generation, texture generation, shape transformation, and scene generation. </details>

📄 Paper

2. Deep Generative Models on 3D Representations: A Survey [arxiv 2023.10]

Authors: Zifan Shi, Sida Peng, Yinghao Xu, Andreas Geiger, Yiyi Liao, Yujun Shen

<details span> <summary><b>Abstract</b></summary> Generative models aim to learn the distribution of observed data by generating new instances. With the advent of neural networks, deep generative models, including variational autoencoders (VAEs), generative adversarial networks (GANs), and diffusion models (DMs), have progressed remarkably in synthesizing 2D images. Recently, researchers started to shift focus from 2D to 3D space, considering that 3D data is more closely aligned with our physical world and holds immense practical potential. However, unlike 2D images, which possess an inherent and efficient representation (\textit{i.e.}, a pixel grid), representing 3D data poses significantly greater challenges. Ideally, a robust 3D representation should be capable of accurately modeling complex shapes and appearances while being highly efficient in handling high-resolution data with high processing speeds and low memory requirements. Regrettably, existing 3D representations, such as point clouds, meshes, and neural fields, often fail to satisfy all of these requirements simultaneously. In this survey, we thoroughly review the ongoing developments of 3D generative models, including methods that employ 2D and 3D supervision. Our analysis centers on generative models, with a particular focus on the representations utilized in this context. We believe our survey will help the community to track the field's evolution and to spark innovative ideas to propel progress towards solving this challenging task. </details>

📄 Paper | 🌐 Project Page

3. A survey of deep learning-based 3D shape generation [Computational Visual Media 2023.05]

Authors: Qun-Ce Xu, Tai-Jiang Mu, Yong-Liang Yang

<details span> <summary><b>Abstract</b></summary> Deep learning has been successfully used for tasks in the 2D image domain. Research on 3D computer vision and deep geometry learning has also attracted attention. Considerable achievements have been made regarding feature extraction and discrimination of 3D shapes. Following recent advances in deep generative models such as generative adversarial networks, effective generation of 3D shapes has become an active research topic. Unlike 2D images with a regular grid structure, 3D shapes have various representations, such as voxels, point clouds, meshes, and implicit functions. For deep learning of 3D shapes, shape representation has to be taken into account as there is no unified representation that can cover all tasks well. Factors such as the representativeness of geometry and topology often largely affect the quality of the generated 3D shapes. In this survey, we comprehensively review works on deep-learning-based 3D shape generation by classifying and discussing them in terms of the underlying shape representation and the architecture of the shape generator. The advantages and disadvantages of each class are further analyzed. We also consider the 3D shape datasets commonly used for shape generation. Finally, we present several potential research directions that hopefully can inspire future works on this topic. </details>

📄 Paper

4. Learning Generative Models of 3D Structures [Computer Graphics Forum 2020.05]

Authors: Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu, Hao Zhang

<details span> <summary><b>Abstract</b></summary> 3D models of objects and scenes are critical to many academic disciplines and industrial applications. Of particular interest is the emerging opportunity for 3D graphics to serve artificial intelligence: computer vision systems can benefit from synthetically-generated training data rendered from virtual 3D scenes, and robots can be trained to navigate in and interact with real-world environments by first acquiring skills in simulated ones.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多