FluentDocker
This library enables docker
and docker-compose
interactions usinga Fluent API. It is supported on Linux, Windows and Mac. It also has support for the legazy docker-machine
interactions.
Sample Fluent API usage
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.ExposePort(5432)
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.WaitForPort("5432/tcp", 30000 /*30s*/)
.Build()
.Start())
{
var config = container.GetConfiguration(true);
Assert.AreEqual(ServiceRunningState.Running, config.State.ToServiceState());
}
This fires up a postgres and waits for it to be ready. To use compose, just do it like this:
:bulb: NOTE: Use the AssumeComposeVersion(ComposeVersion.V2) to use the V2 behaviour, default is still V1 (to be changed to default to V2 later this year)
var file = Path.Combine(Directory.GetCurrentDirectory(),
(TemplateString) "Resources/ComposeTests/WordPress/docker-compose.yml");
// @formatter:off
using (var svc = new Builder()
.UseContainer()
.UseCompose()
.FromFile(file)
.RemoveOrphans()
.WaitForHttp("wordpress", "http://localhost:8000/wp-admin/install.php")
.Build().Start())
// @formatter:on
{
// We now have a running WordPress with a MySql database
var installPage = await "http://localhost:8000/wp-admin/install.php".Wget();
Assert.IsTrue(installPage.IndexOf("https://wordpress.org/", StringComparison.Ordinal) != -1);
Assert.AreEqual(1, svc.Hosts.Count); // The host used by compose
Assert.AreEqual(2, svc.Containers.Count); // We can access each individual container
Assert.AreEqual(2, svc.Images.Count); // And the images used.
}
:bulb Note for Linux Users: Docker requires sudo by default and the library by default expects that executing user do not need to do sudo in order to talk to the docker daemon. More description can be found in the Talking to Docker Daemon chapter.
The fluent API builds up one or more services. Each service may be composite or singular. Therefore it is possible to e.g. fire up several docker-compose based services and manage each of them as a single service or dig in and use all underlying services on each docker-compose service. It is also possible to use services directly e.g.
var file = Path.Combine(Directory.GetCurrentDirectory(),
(TemplateString) "Resources/ComposeTests/WordPress/docker-compose.yml");
using (var svc = new DockerComposeCompositeService(DockerHost, new DockerComposeConfig
{
ComposeFilePath = new List<string> { file }, ForceRecreate = true, RemoveOrphans = true,
StopOnDispose = true
}))
{
svc.Start();
// We now have a running WordPress with a MySql database
var installPage = await $"http://localhost:8000/wp-admin/install.php".Wget();
Assert.IsTrue(installPage.IndexOf("https://wordpress.org/", StringComparison.Ordinal) != -1);
}
The above example creates a docker-compose service from a single compose file. When the service is disposed all underlying services is automatically stopped.
The library is supported by .NET full 4.51 framework and higher, .NET standard 1.6, 2.0. It is divided into three thin layers, each layer is accessible:
- Docker Binaries interactions - Static commands and docker environment
- Services - thin service layer to manage machines, containers etc.
- Fluent API - API to build/discover services to be used
The Majority of the service methods are extension methods and not hardwired into the service itself, making them lightweight and customizable. Since everything is accessible it is e.g. easy to add extensions method for a service that uses the layer 1 commands to provide functionality.
Contribution
I do welcome contribution, though there is no contribution guideline as of yet, make sure to adhere to .editorconfig when doing the Pull Requests. Otherwise the build will fail. I'll update with a real guideline sooner or later this year.
Basic Usage of Commands (Layer 1)
All commands needs a DockerUri
to work with. It is the Uri to the docker daemon, either locally or remote. It can be discoverable or hardcoded. Discovery of local DockerUri
can be done by
var hosts = new Hosts().Discover();
var _docker = hosts.FirstOrDefault(x => x.IsNative) ?? hosts.FirstOrDefault(x => x.Name == "default");
The example snipped will check for native, or docker beta "native" hosts, if not choose the docker-machine "default" as host. If you're using docker-machine and no machine exists or is not started it is easy to create / start a docker-machine by e.g. "test-machine".Create(1024,20000000,1)
. This will create a docker machine named "test-machine" with 1GB of RAM, 20GB Disk, and use one CPU.
It is now possible to use the Uri to communicate using the commands. For example to get the version of client and server docker binaries:
var result = _docker.Host.Version(_docker.Certificates);
Debug.WriteLine(result.Data); // Will Print the Client and Server Version and API Versions respectively.
All commands return a CommandResponseresponse.Success
. If any data associated with the command it is returned in the response.Data
property.
Then it is simple as below to start and stop include delete a container using the commands. Below starts a container and do a PS on it and then deletes it.
var id = _docker.Host.Run("nginx:latest", null, _docker.Certificates).Data;
var ps = _docker.Host.Ps(null, _docker.Certificates).Data;
_docker.Host.RemoveContainer(id, true, true, null, _docker.Certificates);
When running on windows, one can choose to run linux or windows container. Use the LinuxDaemon
or WindowsDaemon
to control which daemon to talk to.
_docker.LinuxDaemon(); // ensures that it will talk to linux daemon, if windows daemon it will switch
Some commands returns a stream of data when e.g. events or logs is wanted using a continuous stream. Streams can be used in background tasks and support CancellationToken
. Below example tails a log.
using (var logs = _docker.Host.Logs(id, _docker.Certificates))
{
while (!logs.IsFinished)
{
var line = logs.TryRead(5000); // Do a read with timeout
if (null == line)
{
break;
}
Debug.WriteLine(line);
}
}
Utility methods exists for commands. They come in different flaviours such as networking etc. For example when reading a log to the end:
using (var logs = _docker.Host.Logs(id, _docker.Certificates))
{
foreach (var line in logs.ReadToEnd())
{
Debug.WriteLine(line);
}
}
Using Fluent API
The highest layer of this library is the fluent API where you can define and control machines, images, and containers. For example to setup a load balancer with two nodejs servers reading from a redis server can look like this (node image is custom built if not found in the repository).
var fullPath = (TemplateString) @"${TEMP}/fluentdockertest/${RND}";
var nginx = Path.Combine(fullPath, "nginx.conf");
Directory.CreateDirectory(fullPath);
typeof(NsResolver).ResourceExtract(fullPath, "index.js");
using (var services = new Builder()
// Define custom node image to be used
.DefineImage("mariotoffia/nodetest").ReuseIfAlreadyExists()
.From("ubuntu")
.Maintainer("Mario Toffia <mario.toffia@xyz.com>")
.Run("apt-get update &&",
"apt-get -y install curl &&",
"curl -sL https://deb.nodesource.com/setup | sudo bash - &&",
"apt-get -y install python build-essential nodejs")
.Run("npm install -g nodemon")
.Add("emb:Ductus.FluentDockerTest/Ductus.FluentDockerTest.MultiContainerTestFiles/package.txt",
"/tmp/package.json")
.Run("cd /tmp && npm install")
.Run("mkdir -p /src && cp -a /tmp/node_modules /src/")
.UseWorkDir("/src")
.Add("index.js", "/src")
.ExposePorts(8080)
.Command("nodemon", "/src/index.js").Builder()
// Redis Db Backend
.UseContainer().WithName("redis").UseImage("redis").Builder()
// Node server 1 & 2
.UseContainer().WithName("node1").UseImage("mariotoffia/nodetest").Link("redis").Builder()
.UseContainer().WithName("node2").UseImage("mariotoffia/nodetest").Link("redis").Builder()
// Nginx as load balancer
.UseContainer().WithName("nginx").UseImage("nginx").Link("node1", "node2")
.CopyOnStart(nginx, "/etc/nginx/nginx.conf")
.ExposePort(80).Builder()
.Build().Start())
{
Assert.AreEqual(4, services.Containers.Count);
var ep = services.Containers.First(x => x.Name == "nginx").ToHostExposedEndpoint("80/tcp");
Assert.IsNotNull(ep);
var round1 = $"http://{ep.Address}:{ep.Port}".Wget();
Assert.AreEqual("This page has been viewed 1 times!", round1);
var round2 = $"http://{ep.Address}:{ep.Port}".Wget();
Assert.AreEqual("This page has been viewed 2 times!", round2);
}
The above example defines a Dockerfile, builds it, for the node image. It then uses vanilla redis and nginx. If you just want to use an existing Dockerfile it can be done like this.
using (var services = new Builder()
.DefineImage("mariotoffia/nodetest").ReuseIfAlreadyExists()
.FromFile("/tmp/Dockerfile")
.Build().Start())
{
// Container either build to reused if found in registry and started here.
}
The fluent API supports from defining a docker-machine to a set of docker instances. It has built-in support for e.g.
waiting for a specific port or a process within the container before Build()
completes and thus can be safely
be used within a using statement. If specific management on wait timeouts etc. you can always build and start the
container and use extension methods to do the waiting on the container itself.
To create a container just omit the start. For example:
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.Build())
{
Assert.AreEqual(ServiceRunningState.Stopped, container.State);
}
This example creates a container with postgres, configure one environment variable. Within the using statement it is possible to start the IContainerService
. Thus each built container is wrapped in a IContainerService
. It is also possible to use the IHostService.GetContainers(...)
to obtain the created, running, and exited containers. From the IHostService
it is also possible to get all the images in the local repository to create containers from.
Whe you want to run a single container do use the fluent or container service start method. For example:
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.Build()
.Start())
{
var config = container.GetConfiguration();
Assert.AreEqual(ServiceRunningState.Running, container.State);
Assert.IsTrue(config.Config.Env.Any(x => x == "POSTGRES_PASSWORD=mysecretpassword"));
}
By default the container is stopped and deleted when the Dispose method is run, in order to keep the container in archve, use the KeepContainer()
on the fluent API. When Dispose()
is invoked it will be stopped but not deleted. It is also possible to keep it running after dispose as well.
Working with ports
It is possible to expose ports both explicit or randomly. Either way it is possible to resolve the IP (in case of machine) and the port (in case of random port) to use in code. For example:
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.ExposePort(40001, 5432)
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.Build()
.Start())
{
var endpoint = container.ToHostExposedEndpoint("5432/tcp");
Assert.AreEqual(40001, endpoint.Port);
}
Here we map the container port 5432 to host port 40001 explicitly. Note the use of container.ToHostExposedEndpoint(...)
. This is to always resolve to a working ip and port to communicate with the docker container. It is also possible to map a random port, i.e. let Docker choose a available port. For example:
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.ExposePort(5432)
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.Build()
.Start())
{
var endpoint = container.ToHostExposedEndpoint("5432/tcp");
Assert.AreNotEqual(0, endpoint.Port);
}
The only difference here is that only one argument is used when ExposePort(...)
was used to configure the container. The same usage applies otherwise and thus is transparent for the code.
In order to know when a certain service is up and running before starting to e.g. connect to it. It is possible to wait for a specific port to be open. For example:
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.ExposePort(5432)
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.WaitForPort("5432/tcp", 30000 /*30s*/)
.Build()
.Start())
{
var config = container.GetConfiguration(true);
Assert.AreEqual(ServiceRunningState.Running, config.State.ToServiceState());
}
In the above example we wait for the container port 5432 to be opened within 30 seconds. If it fails, it will throw an exception and thus the container will be disposed and removed (since we dont have any keep container etc. configuration).
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.ExposePort(5432)
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.WaitForPort("5432/tcp", 30000 /*30s*/, "127.0.0.1")
.Build()
.Start())
{
var config = container.GetConfiguration(true);
Assert.AreEqual(ServiceRunningState.Running, config.State.ToServiceState());
}
Sometimes it is not possible to directly reach the container, by local ip and port, instead e.g. the container has an exposed port on the loopback interface (127.0.0.1) and that is the only way of reaching the container from the program. The above example forces the address to be 127.0.0.1 but still resolves the host port. By default, FluentDocker uses the network inspect on the container to determine the network configuration.
Sometime it is not sufficient to just wait for a port. Sometimes a container process is much more vital to wait for. Therefore a wait for process method exist in the fluent API as well as an extension method on the container object. For example:
using (
var container =
new Builder().UseContainer()
.UseImage("kiasaki/alpine-postgres")
.ExposePort(5432)
.WithEnvironment("POSTGRES_PASSWORD=mysecretpassword")
.WaitForProcess("postgres", 30000 /*30s*/)
.Build()
.Start())
{
var config = container.GetConfiguration(true);
Assert.AreEqual(ServiceRunningState.Running, config.State.ToServiceState());
}
In the above example Build()
will return control when the process "postgres" have been started within the container.
Filesystem & Files
In order to make use