@m31coding/fuzzy-search is a frontend library for searching objects with ids (entities) by their names and features (terms). It is
Install the package via npm:
npm install @m31coding/fuzzy-search
The following files are available in the dist folder for different use cases:
This library uses microbundle. Please consult their documentation for more information on how to use the different files.
The most important definitions can be found in the folder interfaces. For creating a searcher, use the SearcherFactory. Here is a basic usage example (esm module syntax):
import * as fuzzySearch from './path/to/fuzzy-search.module.js'; const searcher = fuzzySearch.SearcherFactory.createDefaultSearcher(); const persons = [ { id: 23501, firstName: 'Alice', lastName: 'King' }, { id: 99234, firstName: 'Bob', lastName: 'Bishop' }, { id: 5823, firstName: 'Carol', lastName: 'Queen' }, { id: 11923, firstName: 'Charlie', lastName: 'Rook' } ]; const indexingMeta = searcher.indexEntities( persons, (e) => e.id, (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`] ); console.dir(indexingMeta); /* { "entries": { "numberOfInvalidTerms": 0, "numberOfDistinctTerms": 12, "normalizationDuration": 0, "numberOfSurrogateCharacters": 0, "indexingDuration": 1 } } */ const result = searcher.getMatches(new fuzzySearch.Query('alice kign')); console.dir(result); /* { "matches": [ { "entity": { "id": 23501, "firstName": "Alice", "lastName": "King" }, "quality": 0.8636363636363635, "matchedString": "Alice King" } ], "query": { "string": "alice kign", "topN": 10, "minQuality": 0.3 }, "meta": { "entries": { "queryDuration": 0 } } } */ const removalResult = searcher.removeEntities([99234, 5823]); console.dir(removalResult); /* { "removedEntities": [ 99234, 5823 ], "meta": { "entries": { "removalDuration": 0 } } } */ const persons2 = [ { id: 723, firstName: 'David', lastName: 'Knight' }, // new { id: 2634, firstName: 'Eve', lastName: 'Pawn' }, // new { id: 23501, firstName: 'Allie', lastName: 'King' }, // updated { id: 11923, firstName: 'Charles', lastName: 'Rook' } // updated ]; const upsertMeta = searcher.upsertEntities( persons2, (e) => e.id, (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`] ); console.dir(upsertMeta); /* { "entries": { "numberOfInvalidTerms": 0, "numberOfDistinctTerms": 12, "normalizationDuration": 0, "numberOfSurrogateCharacters": 0, "upsertDuration": 0 } } */ const result2 = searcher.getMatches(new fuzzySearch.Query('allie')); console.dir(result2); /* { "matches": [ { "entity": { "id": 23501, "firstName": "Allie", "lastName": "King" }, "quality": 1, "matchedString": "Allie" } ], "query": { "string": "allie", "topN": 10, "minQuality": 0.3 }, "meta": { "entries": { "queryDuration": 0 } } } */
The following parameters are available when creating a query:
Parameter | Type | Default | Description |
---|---|---|---|
string | string | - | The query string. |
topN | number | 10 | The maximum number of matches to return. Provide Infinity to return all matches. |
minQuality | number | 0.3 | The minimum quality of a match, ranging from 0 to 1. When set to zero, all terms that share at least one common n-gram with the query are considered a match. |
If the data terms contain characters and strings in non-latin scripts (such as Arabic, Cyrillic, Greek, Han, ... see also ISO 15924), the default configuration must be adjusted before creating the searcher:
const config = fuzzySearch.Config.createDefaultConfig(); config.normalizerConfig.allowCharacter = (_c) => true; const searcher = fuzzySearch.SearcherFactory.createSearcher(config);
Moreover, if your dataset is large (> 100.000 terms), you may index the searcher in a web worker to avoid blocking the main thread, as shown in this usage example.
If your objects cannot be identified by a unique id, you can also pass (e) => e
for the getId
parameter of both indexEntities
and upsertEntities
. Just be aware that the getId
function is used for equality checks and the creation of Maps, particularly utilized by the upsertEntities
and removeEntities
methods. For indexing plain strings, you can call:
const indexingMeta = searcher.indexEntities( ["Alice", "Bob", "Carol", "Charlie"], (e) => e, (e) => [e] );
To try the demo and usage examples locally, clone the repository and execute the commands:
npm install npm run build
To proceed, open the html file of interest (e.g., fuzzy-search-demo.html
) with a local webserver. If you use VS Code, you may use the Live Server extension for this purpose.
This library was optimized for fast querying. At its core, a searcher employs integer indexes that can not be easily updated. The upsert operation is implemented by reindexing a secondary searcher, which is initially empty. Removal is implemented by blacklisting entities.
Consequently, repeated upsert operations with a large number of entities may be costly. In such cases, consider reindexing the searcher from scratch by calling the index
method eventually.
Query strings and data terms are normalized in the following normalization pipeline (order matters):
Normalization to NFKC decomposes characters by compatibility, then re-composes them by canonical equivalence. This ensures that the characters in the replacement table always match. Normalization to NFKD decomposes the characters by compatibility but does not re-compose them, allowing undesired characters to be removed thereafter.
The default normalizer config adopts the following values:
let paddingLeft = '$$'; let paddingRight = '!'; let paddingMiddle = '!$$'; let replacements = [fuzzySearch.LatinReplacements.Value]; let spaceEquivalentCharacters = new Set(['_', '-', '–', '/', ',', '\t']); let treatCharacterAsSpace = (c) => spaceEquivalentCharacters.has(c); let allowCharacter = (c) => { return fuzzySearch.StringUtilities.isAlphanumeric(c); };
With this pipeline and configuration, the string Thanh Việt Đoàn
is normalized to thanh viet doan
before padding. With padding applied, it becomes $$thanh!$$viet!$$doan!
. The choice of the padding is explained in the next section.
The general idea of n-grams and the sorting trick is outlined in this blog post. In short, the data terms and the query string are broken down into 3-grams, e.g. the string $$sarah!
becomes:
$$s, $sa, sar, ara, rah, ah!
The more common 3-grams between the query and the term, the higher the quality of the match. By padding the front with two characters, and the back with one character, more weight is given to the beginning of the string.
In addition, the characters of the 3-grams that don't contain '$' are sorted:
$$s, $sa, ars, aar, ahr, !ah
Sorting the characters increases the number of common n-grams for transposition errors, one of the most common types of errors in human typing. Not sorting the first n-grams assumes that transpositions are less likely to occur at the beginning of a string.
The quality is then computed by dividing the number of common n-grams by the number of n-grams of the longer string, query or term. Moreover, a 5% penalty is given if the query string does not match the term exactly. This accounts for the fact that even if two strings have the same 3-grams, they are not necessarily the same, i.e., compare aabaaa
and aaabaa
. With this approach, the following quality values are obtained:
Query | Term | Padded query | Padded term | Common 3-grams | Quality |
---|---|---|---|---|---|
sarah | sarah | $$sarah! | $$sarah! | 6 | 6 / 6 = 1.0 |
sarha | sarah | $$arah! | $$sarah! | 5 | 5 / 6 * 0.95 = 0.79 |
sar | sarah | $$sar! | $$sarah! | 3 | 3 / 6 * 0.95 = 0.475 |
arah | sarah | $$arah! | $$sarah! | 3 | 3 / 6 * 0.95 = 0.475 |
Note that I refrain from explicitly computing the Damereau-Levenshtein distance between strings, in order to keep the queries fast.
Padding strings in the middle allows for extending the algorithm across word boundaries. sarah wolff
becomes $$sarah!$$wolff!
and matches wolff sarah
with a quality of 0.95, if 3-grams that end with a '$' are discarded.
The overall approach outlined above can be summarized as: remove n-grams that end with '$', sort n-grams that don't contain '$'. The default configuration appears in the code as follows:
let ngramN = 3; let transformNgram = (ngram) => ngram.endsWith('$') ? null : ngram.indexOf('$') === -1 ? ngram.split('').sort().join('') : ngram; let inequalityPenalty = 0.05;
This library is free. If you find it valuable and wish to express your support, please leave a star. You are kindly invited to contribute. If you see the possibility for enhancement, please create a GitHub issue and you will receive timely feedback.
Happy
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作— 国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号