@m31coding/fuzzy-search is a frontend library for searching objects with ids (entities) by their names and features (terms). It is

Install the package via npm:
npm install @m31coding/fuzzy-search
The following files are available in the dist folder for different use cases:
This library uses microbundle. Please consult their documentation for more information on how to use the different files.
The most important definitions can be found in the folder interfaces. For creating a searcher, use the SearcherFactory. Here is a basic usage example (esm module syntax):
import * as fuzzySearch from './path/to/fuzzy-search.module.js'; const searcher = fuzzySearch.SearcherFactory.createDefaultSearcher(); const persons = [ { id: 23501, firstName: 'Alice', lastName: 'King' }, { id: 99234, firstName: 'Bob', lastName: 'Bishop' }, { id: 5823, firstName: 'Carol', lastName: 'Queen' }, { id: 11923, firstName: 'Charlie', lastName: 'Rook' } ]; const indexingMeta = searcher.indexEntities( persons, (e) => e.id, (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`] ); console.dir(indexingMeta); /* { "entries": { "numberOfInvalidTerms": 0, "numberOfDistinctTerms": 12, "normalizationDuration": 0, "numberOfSurrogateCharacters": 0, "indexingDuration": 1 } } */ const result = searcher.getMatches(new fuzzySearch.Query('alice kign')); console.dir(result); /* { "matches": [ { "entity": { "id": 23501, "firstName": "Alice", "lastName": "King" }, "quality": 0.8636363636363635, "matchedString": "Alice King" } ], "query": { "string": "alice kign", "topN": 10, "minQuality": 0.3 }, "meta": { "entries": { "queryDuration": 0 } } } */ const removalResult = searcher.removeEntities([99234, 5823]); console.dir(removalResult); /* { "removedEntities": [ 99234, 5823 ], "meta": { "entries": { "removalDuration": 0 } } } */ const persons2 = [ { id: 723, firstName: 'David', lastName: 'Knight' }, // new { id: 2634, firstName: 'Eve', lastName: 'Pawn' }, // new { id: 23501, firstName: 'Allie', lastName: 'King' }, // updated { id: 11923, firstName: 'Charles', lastName: 'Rook' } // updated ]; const upsertMeta = searcher.upsertEntities( persons2, (e) => e.id, (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`] ); console.dir(upsertMeta); /* { "entries": { "numberOfInvalidTerms": 0, "numberOfDistinctTerms": 12, "normalizationDuration": 0, "numberOfSurrogateCharacters": 0, "upsertDuration": 0 } } */ const result2 = searcher.getMatches(new fuzzySearch.Query('allie')); console.dir(result2); /* { "matches": [ { "entity": { "id": 23501, "firstName": "Allie", "lastName": "King" }, "quality": 1, "matchedString": "Allie" } ], "query": { "string": "allie", "topN": 10, "minQuality": 0.3 }, "meta": { "entries": { "queryDuration": 0 } } } */
The following parameters are available when creating a query:
| Parameter | Type | Default | Description |
|---|---|---|---|
| string | string | - | The query string. |
| topN | number | 10 | The maximum number of matches to return. Provide Infinity to return all matches. |
| minQuality | number | 0.3 | The minimum quality of a match, ranging from 0 to 1. When set to zero, all terms that share at least one common n-gram with the query are considered a match. |
If the data terms contain characters and strings in non-latin scripts (such as Arabic, Cyrillic, Greek, Han, ... see also ISO 15924), the default configuration must be adjusted before creating the searcher:
const config = fuzzySearch.Config.createDefaultConfig(); config.normalizerConfig.allowCharacter = (_c) => true; const searcher = fuzzySearch.SearcherFactory.createSearcher(config);
Moreover, if your dataset is large (> 100.000 terms), you may index the searcher in a web worker to avoid blocking the main thread, as shown in this usage example.
If your objects cannot be identified by a unique id, you can also pass (e) => e for the getId parameter of both indexEntities and upsertEntities. Just be aware that the getId function is used for equality checks and the creation of Maps, particularly utilized by the upsertEntities and removeEntities methods. For indexing plain strings, you can call:
const indexingMeta = searcher.indexEntities( ["Alice", "Bob", "Carol", "Charlie"], (e) => e, (e) => [e] );
To try the demo and usage examples locally, clone the repository and execute the commands:
npm install npm run build
To proceed, open the html file of interest (e.g., fuzzy-search-demo.html) with a local webserver. If you use VS Code, you may use the Live Server extension for this purpose.
This library was optimized for fast querying. At its core, a searcher employs integer indexes that can not be easily updated. The upsert operation is implemented by reindexing a secondary searcher, which is initially empty. Removal is implemented by blacklisting entities.
Consequently, repeated upsert operations with a large number of entities may be costly. In such cases, consider reindexing the searcher from scratch by calling the index method eventually.
Query strings and data terms are normalized in the following normalization pipeline (order matters):
Normalization to NFKC decomposes characters by compatibility, then re-composes them by canonical equivalence. This ensures that the characters in the replacement table always match. Normalization to NFKD decomposes the characters by compatibility but does not re-compose them, allowing undesired characters to be removed thereafter.
The default normalizer config adopts the following values:
let paddingLeft = '$$'; let paddingRight = '!'; let paddingMiddle = '!$$'; let replacements = [fuzzySearch.LatinReplacements.Value]; let spaceEquivalentCharacters = new Set(['_', '-', '–', '/', ',', '\t']); let treatCharacterAsSpace = (c) => spaceEquivalentCharacters.has(c); let allowCharacter = (c) => { return fuzzySearch.StringUtilities.isAlphanumeric(c); };
With this pipeline and configuration, the string Thanh Việt Đoàn is normalized to thanh viet doan before padding. With padding applied, it becomes $$thanh!$$viet!$$doan!. The choice of the padding is explained in the next section.
The general idea of n-grams and the sorting trick is outlined in this blog post. In short, the data terms and the query string are broken down into 3-grams, e.g. the string $$sarah! becomes:
$$s, $sa, sar, ara, rah, ah!
The more common 3-grams between the query and the term, the higher the quality of the match. By padding the front with two characters, and the back with one character, more weight is given to the beginning of the string.
In addition, the characters of the 3-grams that don't contain '$' are sorted:
$$s, $sa, ars, aar, ahr, !ah
Sorting the characters increases the number of common n-grams for transposition errors, one of the most common types of errors in human typing. Not sorting the first n-grams assumes that transpositions are less likely to occur at the beginning of a string.
The quality is then computed by dividing the number of common n-grams by the number of n-grams of the longer string, query or term. Moreover, a 5% penalty is given if the query string does not match the term exactly. This accounts for the fact that even if two strings have the same 3-grams, they are not necessarily the same, i.e., compare aabaaa and aaabaa. With this approach, the following quality values are obtained:
| Query | Term | Padded query | Padded term | Common 3-grams | Quality |
|---|---|---|---|---|---|
| sarah | sarah | $$sarah! | $$sarah! | 6 | 6 / 6 = 1.0 |
| sarha | sarah | $$arah! | $$sarah! | 5 | 5 / 6 * 0.95 = 0.79 |
| sar | sarah | $$sar! | $$sarah! | 3 | 3 / 6 * 0.95 = 0.475 |
| arah | sarah | $$arah! | $$sarah! | 3 | 3 / 6 * 0.95 = 0.475 |
Note that I refrain from explicitly computing the Damereau-Levenshtein distance between strings, in order to keep the queries fast.
Padding strings in the middle allows for extending the algorithm across word boundaries. sarah wolff becomes $$sarah!$$wolff! and matches wolff sarah with a quality of 0.95, if 3-grams that end with a '$' are discarded.
The overall approach outlined above can be summarized as: remove n-grams that end with '$', sort n-grams that don't contain '$'. The default configuration appears in the code as follows:
let ngramN = 3; let transformNgram = (ngram) => ngram.endsWith('$') ? null : ngram.indexOf('$') === -1 ? ngram.split('').sort().join('') : ngram; let inequalityPenalty = 0.05;
This library is free. If you find it valuable and wish to express your support, please leave a star. You are kindly invited to contribute. If you see the possibility for enhancement, please create a GitHub issue and you will receive timely feedback.
Happy


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号