fuzzy-search

fuzzy-search

高效灵活的前端模糊搜索JavaScript库

fuzzy-search是一款高性能的前端模糊搜索JavaScript库。它采用n-gram和字符排序算法,支持多语言,查询速度通常低于10ms。该库允许灵活管理搜索实体和术语,无外部依赖,经过全面测试。fuzzy-search为开发者提供了快速、准确且易于集成的搜索解决方案,适用于各类Web应用。

Frontend模糊搜索JavaScript库性能优化多语言支持Github开源项目

Frontend Fuzzy Search

@m31coding/fuzzy-search is a frontend library for searching objects with ids (entities) by their names and features (terms). It is

  • Fast: A query takes usually well below 10 ms.
  • Accurate: Powered by n-grams with a novel approach of character sorting.
  • Multilingual: The language-agnostic design of the algorithm enables operation across all languages.
  • Flexible: Entities and their terms can be inserted, updated and removed.
  • Reliable: Well tested standalone library with no dependencies.

license npm version CI m31coding youtube X

fuzzy-search-preview

Installation

Install the package via npm:

npm install @m31coding/fuzzy-search

The following files are available in the dist folder for different use cases:

  • fuzzy-search.module.js (ESM)
  • fuzzy-search.cjs (CommonJS)
  • fuzzy-search.umd.js (UMD)
  • fuzzy-search.modern.js (Modern mode)
  • fuzzy-search.d.ts (TypeScript definitions)

This library uses microbundle. Please consult their documentation for more information on how to use the different files.

Usage

The most important definitions can be found in the folder interfaces. For creating a searcher, use the SearcherFactory. Here is a basic usage example (esm module syntax):

import * as fuzzySearch from './path/to/fuzzy-search.module.js'; const searcher = fuzzySearch.SearcherFactory.createDefaultSearcher(); const persons = [ { id: 23501, firstName: 'Alice', lastName: 'King' }, { id: 99234, firstName: 'Bob', lastName: 'Bishop' }, { id: 5823, firstName: 'Carol', lastName: 'Queen' }, { id: 11923, firstName: 'Charlie', lastName: 'Rook' } ]; const indexingMeta = searcher.indexEntities( persons, (e) => e.id, (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`] ); console.dir(indexingMeta); /* { "entries": { "numberOfInvalidTerms": 0, "numberOfDistinctTerms": 12, "normalizationDuration": 0, "numberOfSurrogateCharacters": 0, "indexingDuration": 1 } } */ const result = searcher.getMatches(new fuzzySearch.Query('alice kign')); console.dir(result); /* { "matches": [ { "entity": { "id": 23501, "firstName": "Alice", "lastName": "King" }, "quality": 0.8636363636363635, "matchedString": "Alice King" } ], "query": { "string": "alice kign", "topN": 10, "minQuality": 0.3 }, "meta": { "entries": { "queryDuration": 0 } } } */ const removalResult = searcher.removeEntities([99234, 5823]); console.dir(removalResult); /* { "removedEntities": [ 99234, 5823 ], "meta": { "entries": { "removalDuration": 0 } } } */ const persons2 = [ { id: 723, firstName: 'David', lastName: 'Knight' }, // new { id: 2634, firstName: 'Eve', lastName: 'Pawn' }, // new { id: 23501, firstName: 'Allie', lastName: 'King' }, // updated { id: 11923, firstName: 'Charles', lastName: 'Rook' } // updated ]; const upsertMeta = searcher.upsertEntities( persons2, (e) => e.id, (e) => [e.firstName, e.lastName, `${e.firstName} ${e.lastName}`] ); console.dir(upsertMeta); /* { "entries": { "numberOfInvalidTerms": 0, "numberOfDistinctTerms": 12, "normalizationDuration": 0, "numberOfSurrogateCharacters": 0, "upsertDuration": 0 } } */ const result2 = searcher.getMatches(new fuzzySearch.Query('allie')); console.dir(result2); /* { "matches": [ { "entity": { "id": 23501, "firstName": "Allie", "lastName": "King" }, "quality": 1, "matchedString": "Allie" } ], "query": { "string": "allie", "topN": 10, "minQuality": 0.3 }, "meta": { "entries": { "queryDuration": 0 } } } */

The following parameters are available when creating a query:

ParameterTypeDefaultDescription
stringstring-The query string.
topNnumber10The maximum number of matches to return. Provide Infinity to return all matches.
minQualitynumber0.3The minimum quality of a match, ranging from 0 to 1. When set to zero, all terms that share at least one common n-gram with the query are considered a match.

If the data terms contain characters and strings in non-latin scripts (such as Arabic, Cyrillic, Greek, Han, ... see also ISO 15924), the default configuration must be adjusted before creating the searcher:

const config = fuzzySearch.Config.createDefaultConfig(); config.normalizerConfig.allowCharacter = (_c) => true; const searcher = fuzzySearch.SearcherFactory.createSearcher(config);

Moreover, if your dataset is large (> 100.000 terms), you may index the searcher in a web worker to avoid blocking the main thread, as shown in this usage example.

If your objects cannot be identified by a unique id, you can also pass (e) => e for the getId parameter of both indexEntities and upsertEntities. Just be aware that the getId function is used for equality checks and the creation of Maps, particularly utilized by the upsertEntities and removeEntities methods. For indexing plain strings, you can call:

const indexingMeta = searcher.indexEntities( ["Alice", "Bob", "Carol", "Charlie"], (e) => e, (e) => [e] );

To try the demo and usage examples locally, clone the repository and execute the commands:

npm install npm run build

To proceed, open the html file of interest (e.g., fuzzy-search-demo.html) with a local webserver. If you use VS Code, you may use the Live Server extension for this purpose.

Upsert and removal

This library was optimized for fast querying. At its core, a searcher employs integer indexes that can not be easily updated. The upsert operation is implemented by reindexing a secondary searcher, which is initially empty. Removal is implemented by blacklisting entities.

Consequently, repeated upsert operations with a large number of entities may be costly. In such cases, consider reindexing the searcher from scratch by calling the index method eventually.

Normalization

Query strings and data terms are normalized in the following normalization pipeline (order matters):

  • Null and undefined strings are replaced by an empty string.
  • Strings are lowercased and normalized to NFKC.
  • Replacements are applied to characters such as å -> aa, æ -> ae. See also Latin replacements.
  • Strings are normalized to NFKD.
  • Space equivalent characters are replaced by a space.
  • Surrogate characters, padding characters and other non-allowed characters are removed.
  • Strings are padded to the left, right and in the middle (replacement of spaces).

Normalization to NFKC decomposes characters by compatibility, then re-composes them by canonical equivalence. This ensures that the characters in the replacement table always match. Normalization to NFKD decomposes the characters by compatibility but does not re-compose them, allowing undesired characters to be removed thereafter.

The default normalizer config adopts the following values:

let paddingLeft = '$$'; let paddingRight = '!'; let paddingMiddle = '!$$'; let replacements = [fuzzySearch.LatinReplacements.Value]; let spaceEquivalentCharacters = new Set(['_', '-', '–', '/', ',', '\t']); let treatCharacterAsSpace = (c) => spaceEquivalentCharacters.has(c); let allowCharacter = (c) => { return fuzzySearch.StringUtilities.isAlphanumeric(c); };

With this pipeline and configuration, the string Thanh Việt Đoàn is normalized to thanh viet doan before padding. With padding applied, it becomes $$thanh!$$viet!$$doan!. The choice of the padding is explained in the next section.

Sorted n-grams

The general idea of n-grams and the sorting trick is outlined in this blog post. In short, the data terms and the query string are broken down into 3-grams, e.g. the string $$sarah! becomes:

$$s, $sa, sar, ara, rah, ah!

The more common 3-grams between the query and the term, the higher the quality of the match. By padding the front with two characters, and the back with one character, more weight is given to the beginning of the string.

In addition, the characters of the 3-grams that don't contain '$' are sorted:

$$s, $sa, ars, aar, ahr, !ah

Sorting the characters increases the number of common n-grams for transposition errors, one of the most common types of errors in human typing. Not sorting the first n-grams assumes that transpositions are less likely to occur at the beginning of a string.

The quality is then computed by dividing the number of common n-grams by the number of n-grams of the longer string, query or term. Moreover, a 5% penalty is given if the query string does not match the term exactly. This accounts for the fact that even if two strings have the same 3-grams, they are not necessarily the same, i.e., compare aabaaa and aaabaa. With this approach, the following quality values are obtained:

QueryTermPadded queryPadded termCommon 3-gramsQuality
sarahsarah$$sarah!$$sarah!66 / 6 = 1.0
sarhasarah$$arah!$$sarah!55 / 6 * 0.95 = 0.79
sarsarah$$sar!$$sarah!33 / 6 * 0.95 = 0.475
arahsarah$$arah!$$sarah!33 / 6 * 0.95 = 0.475

Note that I refrain from explicitly computing the Damereau-Levenshtein distance between strings, in order to keep the queries fast.

Padding strings in the middle allows for extending the algorithm across word boundaries. sarah wolff becomes $$sarah!$$wolff! and matches wolff sarah with a quality of 0.95, if 3-grams that end with a '$' are discarded.

The overall approach outlined above can be summarized as: remove n-grams that end with '$', sort n-grams that don't contain '$'. The default configuration appears in the code as follows:

let ngramN = 3; let transformNgram = (ngram) => ngram.endsWith('$') ? null : ngram.indexOf('$') === -1 ? ngram.split('').sort().join('') : ngram; let inequalityPenalty = 0.05;

Support and Contribution

This library is free. If you find it valuable and wish to express your support, please leave a star. You are kindly invited to contribute. If you see the possibility for enhancement, please create a GitHub issue and you will receive timely feedback.

Happy

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多