awesome-time-series-segmentation-papers

awesome-time-series-segmentation-papers

时间序列分割技术论文精选与代码实现

该项目汇集了时间序列分割领域的经典算法和最新研究成果,涵盖单变量、多变量和张量时间序列的分割方法。内容包括无监督语义分割、变点检测等技术,并提供相关代码实现和数据集链接。这一资源对时间序列处理和模式识别研究具有重要参考价值。

时间序列分割机器学习数据挖掘变点检测语义分割Github开源项目

Awesome Time Series Segmentation Papers

Awesome PRs WelcomeStars

Star History

<a href="https://star-history.com/#lzz19980125/awesome-time-series-segmentation-papers&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lzz19980125/awesome-time-series-segmentation-papers&type=Date" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=lzz19980125/awesome-time-series-segmentation-papers&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=lzz19980125/awesome-time-series-segmentation-papers&type=Date" /> </picture> </a>

Description

This repository contains a reading list of papers on Time Series Segmentation. This repository is still being continuously improved.

As a crucial time series preprocessing technique, semantic segmentation divides poorly understood time series into several discrete and homogeneous segments. This approach aims to uncover latent temporal evolution patterns, detect unexpected regularities and regimes, thereby rendering the analysis of massive time series data more manageable.

Time series segmentation often intertwines with research in many domains. Firstly, the relationship between time series segmentation, time series change point detection, and some aspects of time series anomaly/outlier detection is somewhat ambiguous. Therefore, this repository includes a selection of papers from these areas. Secondly, time series segmentation can be regarded as a process of information compression in time series, hence papers in this field often incorporate concepts from information theory (e.g., using minimum description length to guide the design of unsupervised time series segmentation models). Additionally, the task of decomposing human actions into a series of plausible motion primitives can be addressed through methods for segmenting sensor time series. Consequently, papers related to motion capture from the fields of computer vision and ubiquitous computing are also included in this collection.

Generally, the subjects of unsupervised semantic segmentation can be categorized into:

  • univariate time series forecasting univariate time series: , where is the length of the time series.
  • multivariate time series forecasting multivariate time series: , where is the number of variables (channels).
  • spatio-temporal forecasting tensor: , where denotes the dimensions other than time and variables.

In the field of time series research, unlike time series forecasting, anomaly detection, and classification/clustering, the number of papers on time series segmentation has been somewhat lukewarm in recent years (this observation may carry a degree of subjectivity from the author). Additionally, deep learning methods do not seem to dominate this area as they do in others. Some classic but solid algorithms remain highly competitive even today, with quite a few originating from the same research group. Therefore, in the following paper list, I will introduce them indexed by well-known researchers and research groups in this field.

Some Additional Information

🚩 2024/4/28: In fact, manually annotating segment points (change points) in large time series datasets is extremely labor-intensive and somewhat subjective. Therefore, the field of time series segmentation lacks large public datasets with ground truth, making it difficult for supervised methods to find sources of training data. Unsupervised time series segmentation also acts to some extent as an automatic annotator of segmentation points, making it easier to implement. Currently, 95% of the research work included in this repository is unsupervised.

🚩 2024/1/27: I have marked some recommended papers / datasets / implementations with 🌟 (Just my personal preference 😉).

Survey & Evaluation

NOTE: the ranking has no particular order.

TYPEVenuePaper Title and Paper InterpretationCode
DatasetDARLI-AP@EDBT/ICDT '23Time Series Segmentation Applied to a New Data Set for Mobile Sensing of Human Activities 🌟MOSADStars
DatasetECML-PKDD Workshop '23Human Activity Segmentation Challenge@ECML/PKDD’23 🌟Challenge Link
VisualizationIEEE TVCG '21MultiSegVA Using Visual Analytics to Segment Biologging Time Series on Multiple ScalesNone
SurveyIEEE J. Sel. Areas Commun. '21Sequential (Quickest) Change Detection Classical Results and New DirectionsNone
SurveySignal Process. '20Selective review of offline change point detection methods 🌟RupturesStars
EvaluationArxiv '20An Evaluation of Change Point Detection Algorithms 🌟TCPDBenchStars
SurveyKnowl. Inf. Syst. '17A survey of methods for time series change point detection 🌟None
EvaluationInf. Syst. '17An evaluation of combinations of lossy compression and change-detection approaches for time-series dataNone
SurveyIEEE Trans Hum. Mach. Syst. '16Movement Primitive Segmentation for Human Motion Modeling A Framework for Analysis 🌟None
SurveyEAAI '11A review on time series data miningNone
SurveyCSUR '11Time-series data miningNone
DatasetGI '04Segmenting Motion Capture Data into Distinct Behaviors 🌟Website

David Hallac (Stanford)

TYPEVenuePaper Title and Paper InterpretationCode
multivariate time series forecastingKDD Workshop MiLeTS '20Driver2vec Driver Identification from Automotive DataDriver2vecStars
multivariate time series forecastingAdv. Data Anal. Classif. '19Greedy Gaussian segmentation of multivariate time series 🌟GGSStars
multivariate time series forecastingArxiv '18MASA: Motif-Aware State Assignment in Noisy Time Series DataMASAStars
Ph.D. ThesisProQuest '18Inferring Structure from Multivariate Time Series Sensor DataNone
multivariate time series forecastingKDD '17Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data 🌟TICCStars
multivariate time series forecastingKDD '17Network Inference via the Time-Varying Graphical Lasso 🌟TVGLStars

Shaghayegh Gharghabi (from Eamonn Keogh's Lab, UC Riverside)

TYPEVenuePaper Title and Paper InterpretationCode
multivariate time series forecastingDMKD '19Domain agnostic online semantic segmentation for multi-dimensional time series 🌟Floss & datasets)
univariate time series forecastingICDM '17Matrix Profile VIII Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels 🌟Floss

Yasuko Matsubara & Yasushi Sakurai (from Sakurai & Matsubara Lab)

TYPEVenuePaper Title and Paper InterpretationCode
spatio-temporal forecastingWWW '24Dynamic Multi-Network Mining of Tensor Time Series 🌟DMMStars
spatio-temporal forecastingWWW '23Fast and Multi-aspect Mining of Complex Time-stamped Event Streams 🌟CubeScopeStars
spatio-temporal forecastingKDD '22Fast Mining and Forecasting of Co-evolving Epidemiological Data Streams 🌟None
spatio-temporal forecastingCIKM '22Modeling Dynamic Interactions over Tensor StreamsDismoStars
multivariate time series forecastingCIKM '22Mining Reaction and Diffusion Dynamics in Social Activities 🌟None
spatio-temporal forecastingNeurIPS '21SSMF Shifting Seasonal Matrix FactorizationssmfStars
spatio-temporal forecastingKDD '20Non-Linear Mining of Social Activities in Tensor Streams 🌟None
spatio-temporal forecastingICDM '19Multi-aspect mining of complex sensor sequences 🌟CubeMarkerStars
multivariate time series forecastingKDD '19Dynamic Modeling and Forecasting of Time-evolving Data StreamsOrbitMapStars
multivariate time series forecastingCIKM '19Automatic Sequential Pattern Mining in Data StreamsNone
multivariate time series forecastingKDD '16Regime Shifts in Streams: Real-time Forecasting of Co-evolving Time SequencesRegimeCast
spatio-temporal forecastingWWW '16Non-linear mining of competing local activitiesCompCube
spatio-temporal forecastingWWW '15The web as a jungle: Non-linear dynamical systems for co-evolving online activities 🌟Ecoweb & dataset
multivariate time series forecastingSIGMOD '14AutoPlait Automatic Mining of Co-evolving Time Sequences 🌟AutoPlait
multivariate time series forecastingICDM '14Fast and Exact Monitoring of Co-evolving Data StreamsNone
spatio-temporal forecastingKDD '14FUNNEL Automatic Mining of Spatially Coevolving EpidemicsFunnel

Bryan Hooi (NUS)

TYPEVenuePaper Title and Paper InterpretationCode
multivariate time series forecastingTKDE '22Time Series Anomaly Detection with Adversarial Reconstruction Networks 🌟BeatGANStars
multivariate time series forecastingIJCAI '19BeatGAN Anomalous Rhythm Detection using Adversarially Generated Time Series 🌟BeatGANStars
Ph.D. ThesisProQuest '19Anomaly Detection in Graphs and Time Series Algorithms and ApplicationsNone
![multivariate time series

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多