awesome-time-series-segmentation-papers

awesome-time-series-segmentation-papers

时间序列分割技术论文精选与代码实现

该项目汇集了时间序列分割领域的经典算法和最新研究成果,涵盖单变量、多变量和张量时间序列的分割方法。内容包括无监督语义分割、变点检测等技术,并提供相关代码实现和数据集链接。这一资源对时间序列处理和模式识别研究具有重要参考价值。

时间序列分割机器学习数据挖掘变点检测语义分割Github开源项目

Awesome Time Series Segmentation Papers

Awesome PRs WelcomeStars

Star History

<a href="https://star-history.com/#lzz19980125/awesome-time-series-segmentation-papers&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lzz19980125/awesome-time-series-segmentation-papers&type=Date" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=lzz19980125/awesome-time-series-segmentation-papers&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=lzz19980125/awesome-time-series-segmentation-papers&type=Date" /> </picture> </a>

Description

This repository contains a reading list of papers on Time Series Segmentation. This repository is still being continuously improved.

As a crucial time series preprocessing technique, semantic segmentation divides poorly understood time series into several discrete and homogeneous segments. This approach aims to uncover latent temporal evolution patterns, detect unexpected regularities and regimes, thereby rendering the analysis of massive time series data more manageable.

Time series segmentation often intertwines with research in many domains. Firstly, the relationship between time series segmentation, time series change point detection, and some aspects of time series anomaly/outlier detection is somewhat ambiguous. Therefore, this repository includes a selection of papers from these areas. Secondly, time series segmentation can be regarded as a process of information compression in time series, hence papers in this field often incorporate concepts from information theory (e.g., using minimum description length to guide the design of unsupervised time series segmentation models). Additionally, the task of decomposing human actions into a series of plausible motion primitives can be addressed through methods for segmenting sensor time series. Consequently, papers related to motion capture from the fields of computer vision and ubiquitous computing are also included in this collection.

Generally, the subjects of unsupervised semantic segmentation can be categorized into:

  • univariate time series forecasting univariate time series: , where is the length of the time series.
  • multivariate time series forecasting multivariate time series: , where is the number of variables (channels).
  • spatio-temporal forecasting tensor: , where denotes the dimensions other than time and variables.

In the field of time series research, unlike time series forecasting, anomaly detection, and classification/clustering, the number of papers on time series segmentation has been somewhat lukewarm in recent years (this observation may carry a degree of subjectivity from the author). Additionally, deep learning methods do not seem to dominate this area as they do in others. Some classic but solid algorithms remain highly competitive even today, with quite a few originating from the same research group. Therefore, in the following paper list, I will introduce them indexed by well-known researchers and research groups in this field.

Some Additional Information

🚩 2024/4/28: In fact, manually annotating segment points (change points) in large time series datasets is extremely labor-intensive and somewhat subjective. Therefore, the field of time series segmentation lacks large public datasets with ground truth, making it difficult for supervised methods to find sources of training data. Unsupervised time series segmentation also acts to some extent as an automatic annotator of segmentation points, making it easier to implement. Currently, 95% of the research work included in this repository is unsupervised.

🚩 2024/1/27: I have marked some recommended papers / datasets / implementations with 🌟 (Just my personal preference 😉).

Survey & Evaluation

NOTE: the ranking has no particular order.

TYPEVenuePaper Title and Paper InterpretationCode
DatasetDARLI-AP@EDBT/ICDT '23Time Series Segmentation Applied to a New Data Set for Mobile Sensing of Human Activities 🌟MOSADStars
DatasetECML-PKDD Workshop '23Human Activity Segmentation Challenge@ECML/PKDD’23 🌟Challenge Link
VisualizationIEEE TVCG '21MultiSegVA Using Visual Analytics to Segment Biologging Time Series on Multiple ScalesNone
SurveyIEEE J. Sel. Areas Commun. '21Sequential (Quickest) Change Detection Classical Results and New DirectionsNone
SurveySignal Process. '20Selective review of offline change point detection methods 🌟RupturesStars
EvaluationArxiv '20An Evaluation of Change Point Detection Algorithms 🌟TCPDBenchStars
SurveyKnowl. Inf. Syst. '17A survey of methods for time series change point detection 🌟None
EvaluationInf. Syst. '17An evaluation of combinations of lossy compression and change-detection approaches for time-series dataNone
SurveyIEEE Trans Hum. Mach. Syst. '16Movement Primitive Segmentation for Human Motion Modeling A Framework for Analysis 🌟None
SurveyEAAI '11A review on time series data miningNone
SurveyCSUR '11Time-series data miningNone
DatasetGI '04Segmenting Motion Capture Data into Distinct Behaviors 🌟Website

David Hallac (Stanford)

TYPEVenuePaper Title and Paper InterpretationCode
multivariate time series forecastingKDD Workshop MiLeTS '20Driver2vec Driver Identification from Automotive DataDriver2vecStars
multivariate time series forecastingAdv. Data Anal. Classif. '19Greedy Gaussian segmentation of multivariate time series 🌟GGSStars
multivariate time series forecastingArxiv '18MASA: Motif-Aware State Assignment in Noisy Time Series DataMASAStars
Ph.D. ThesisProQuest '18Inferring Structure from Multivariate Time Series Sensor DataNone
multivariate time series forecastingKDD '17Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data 🌟TICCStars
multivariate time series forecastingKDD '17Network Inference via the Time-Varying Graphical Lasso 🌟TVGLStars

Shaghayegh Gharghabi (from Eamonn Keogh's Lab, UC Riverside)

TYPEVenuePaper Title and Paper InterpretationCode
multivariate time series forecastingDMKD '19Domain agnostic online semantic segmentation for multi-dimensional time series 🌟Floss & datasets)
univariate time series forecastingICDM '17Matrix Profile VIII Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels 🌟Floss

Yasuko Matsubara & Yasushi Sakurai (from Sakurai & Matsubara Lab)

TYPEVenuePaper Title and Paper InterpretationCode
spatio-temporal forecastingWWW '24Dynamic Multi-Network Mining of Tensor Time Series 🌟DMMStars
spatio-temporal forecastingWWW '23Fast and Multi-aspect Mining of Complex Time-stamped Event Streams 🌟CubeScopeStars
spatio-temporal forecastingKDD '22Fast Mining and Forecasting of Co-evolving Epidemiological Data Streams 🌟None
spatio-temporal forecastingCIKM '22Modeling Dynamic Interactions over Tensor StreamsDismoStars
multivariate time series forecastingCIKM '22Mining Reaction and Diffusion Dynamics in Social Activities 🌟None
spatio-temporal forecastingNeurIPS '21SSMF Shifting Seasonal Matrix FactorizationssmfStars
spatio-temporal forecastingKDD '20Non-Linear Mining of Social Activities in Tensor Streams 🌟None
spatio-temporal forecastingICDM '19Multi-aspect mining of complex sensor sequences 🌟CubeMarkerStars
multivariate time series forecastingKDD '19Dynamic Modeling and Forecasting of Time-evolving Data StreamsOrbitMapStars
multivariate time series forecastingCIKM '19Automatic Sequential Pattern Mining in Data StreamsNone
multivariate time series forecastingKDD '16Regime Shifts in Streams: Real-time Forecasting of Co-evolving Time SequencesRegimeCast
spatio-temporal forecastingWWW '16Non-linear mining of competing local activitiesCompCube
spatio-temporal forecastingWWW '15The web as a jungle: Non-linear dynamical systems for co-evolving online activities 🌟Ecoweb & dataset
multivariate time series forecastingSIGMOD '14AutoPlait Automatic Mining of Co-evolving Time Sequences 🌟AutoPlait
multivariate time series forecastingICDM '14Fast and Exact Monitoring of Co-evolving Data StreamsNone
spatio-temporal forecastingKDD '14FUNNEL Automatic Mining of Spatially Coevolving EpidemicsFunnel

Bryan Hooi (NUS)

TYPEVenuePaper Title and Paper InterpretationCode
multivariate time series forecastingTKDE '22Time Series Anomaly Detection with Adversarial Reconstruction Networks 🌟BeatGANStars
multivariate time series forecastingIJCAI '19BeatGAN Anomalous Rhythm Detection using Adversarially Generated Time Series 🌟BeatGANStars
Ph.D. ThesisProQuest '19Anomaly Detection in Graphs and Time Series Algorithms and ApplicationsNone
![multivariate time series

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多