banking-intent-distilbert-classifier

banking-intent-distilbert-classifier

DistilBERT模型实现银行客户查询意图精准分类

该模型基于DistilBERT架构,在BANKING77数据集上微调,可识别77种银行业务意图,准确率达92.44%。支持快速推理,适用于实时客户查询分析。训练仅需20分钟,成本效益高,为银行客服智能化提供了实用方案。模型能够提高客户服务效率,改善服务质量,助力银行业务数字化转型。

Huggingface模型意图分类金融Githubbanking77DistilBERT开源项目自然语言处理

项目介绍:banking-intent-distilbert-classifier

这是一个基于DistilBERT模型的银行意图分类器项目。该项目通过对预训练的DistilBERT模型进行微调,实现了对银行相关查询意图的精确分类。

项目背景

随着在线银行服务的普及,准确理解客户查询的意图变得越来越重要。该项目旨在解决这一问题,通过使用先进的自然语言处理技术,实现对客户查询意图的精确分类。

数据集

该项目使用了BANKING77数据集,这是一个专门针对银行领域的客户服务查询数据集。它包含13,083条客户查询,涵盖了77个细分的意图类别,为模型提供了丰富而精确的训练数据。

模型架构

项目基于DistilBERT模型进行开发。DistilBERT是BERT模型的轻量化版本,在保持高性能的同时,大大减少了模型的规模和计算需求。

训练过程

模型训练采用了以下超参数:

  • 学习率:2e-05
  • 训练批次大小:16
  • 评估批次大小:16
  • 随机种子:42
  • 梯度累积步数:2
  • 总训练批次大小:32
  • 优化器:Adam
  • 学习率调度器:线性
  • 训练轮数:10

整个训练过程在Google Cloud的T4 GPU上完成,耗时不到20分钟,成本约1.07新加坡元。

模型性能

在评估集上,模型取得了以下成绩:

  • 评估损失:0.2885
  • 评估准确率:0.9244

这表明模型在银行意图分类任务上具有很高的准确性。

使用示例

用户可以通过简单的Python代码来使用这个模型进行意图分类:

from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("lxyuan/banking-intent-distilbert-classifier") model = AutoModelForSequenceClassification.from_pretrained("lxyuan/banking-intent-distilbert-classifier") banking_intend_classifier = TextClassificationPipeline( model=model, tokenizer=tokenizer, device=0 ) result = banking_intend_classifier("How to report lost card?") print(result)

项目价值

这个项目为银行和金融机构提供了一个强大的工具,可以帮助他们更好地理解客户需求,提高客户服务质量,同时也为自动化客户服务系统提供了可靠的基础。虽然最初只是作为一个测试项目,但其优秀的性能使它完全可以应用于实际生产环境。

未来展望

尽管该模型已经展现出优秀的性能,但仍有进一步优化的空间。未来可以考虑使用更大的数据集,尝试不同的模型架构,或者针对特定的银行业务场景进行更精细的调优。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多