
混合分辨率适应技术助力多模态大模型
LLaVA-HR是一个采用混合分辨率适应技术的多模态大语言模型。它支持1536x1536的高分辨率图像输入,提高了细粒度视觉语言任务的性能。该模型在保持与LLaVA-1.5相近训练成本的同时,在多个基准测试中表现出色。LLaVA-HR为研究社区提供了一个新的基线,展示了混合分辨率适应方法在提升多模态模型性能方面的潜力。
✨Technical Report:
Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models <br> Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji <br>
<br>
This repository contains the implementation of LLaVA-HR, a strong and efficient MLLM powered by our mixture-of-resolution adaptation. The features of LLaVA-HR include:
[2024.04.16] We fix the evaluation bug for SQA and MMVet. Now, LLaVA-HR-X can achieve 40.3 score in MMVet! checking our model zoo.
[2024.03.06] 🔥🔥🔥 We release LLaVA-HR, a high-resolution MLLM with strong performance and remarkable efficiency. LLaVA-HR greatly outperforms LLaVA-1.5 on multiple benchmarks, checking our model zoo.
git clone https://github.com/luogen1996/LLaVA-HR.git cd LLaVA-HR
conda create -n llava-hr python=3.10 -y conda activate llava-hr pip install --upgrade pip # enable PEP 660 support pip install -e .
pip install ninja
pip install flash-attn --no-build-isolation
| Version | Size | Res | Checkpoint | VQAv2 | GQA | VizWiz | TextVQA | OKVQA | OCRVQA | SQA | MME | POPE | SEED | MM-Vet |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LLaVA-1.5 | 13B | 336 | liuhaotian/llava-v1.5-13b | 80.0 | 63.3 | 53.6 | 61.3 | - | - | 71.6 | 1531.3 | 85.9 | 61.6 | 35.4 |
| LLaVA-HR | 7B | 1024 | favor123/llava-hr-7b-sft-1024 | 81.9 | 64.2 | 48.7 | 67.1 | 58.9 | 68.4 | 67.9 | 1554.9 | 87.6 | 64.2 | 31.5 |
| LLaVA-HR-X | 13B | 1024 | favor123/llava-hr-13b-x-sft-1024 | 82.6 | 65.2 | 56.6 | 70.9 | 61.5 | 69.0 | 69.7 | 1487.3 | 88.0 | 65.3 | 40.3 |
Our training pipeline and datasets are directly borrowed from LLaVA-v1.5. The training consists of two stages:
Please download the caption annotations blip_laion_cc_sbu_558k.json and images from here. Move the downloaded files to the /data/data folder. Then run the following command to start the training process:
bash scripts/v1_5/pretrain_llava_hr.sh
We recommend to directly use our pre-trained projector for better reproducing our results.
| Version | Vision Encoder | Projection | Pretrain Data | Pretraining schedule | Download |
|---|---|---|---|---|---|
| LLaVA-HR-7b | CLIP-L & ConvNeXt-L | MLP-2x | LCS-558K | 1e | projector |
| LLaVA-HR-X-13b | CLIP-L & ConvNeXt-XXL | MLP-2x | LCS-558K | 1e | projector |
Please download the annotation file of the mixed instruction tuning data llava_v1_5_mix665k.json, and download the images from constituting datasets:
.jpgAfter downloading all of them, organize the data as follows in ./playground/data:
├── coco
│ └── train2017
├── gqa
│ └── images
├── ocr_vqa
│ └── images
├── textvqa
│ └── train_images
└── vg
├── VG_100K
└── VG_100K_2
Then, you can start the training process by the following script. If you use your custom dataset, you can refer to llava_v1_5_mix665k.json to format your data.
bash scripts/v1_5/train_eval_llava_hr.sh
Instruction tuning takes around 16 hours for LLaVA-HR-7B on 8x A100s (80G).
</details>We follow LLaVA-v1.5 to conduct evaluations. you should download eval.zip and unzip it to ./playground/data/eval. Besides, we further implement the evaluation of coco-caption, refcoco, vizwiz,ocrvqa and okvqa. Please refer to Evaluation.md to prepare the data.
Then, your can run our evaluation script bash scripts/v1_5/eval.sh.
Here are the steps to run the demo on your local devices.
<details> <summary>Demo scripts </summary> To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*. #### Launch a controller ```Shell python -m llava.serve.controller --host 0.0.0.0 --port 10000 ```python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ./checkpoints/llava-hr-7b-sft-1024
Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller the same, and modify the --port and --worker to a different port number for each worker.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the --device flag: --device mps.
If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with CUDA_VISIBLE_DEVICES. Below is an example of running with the first two GPUs.
</details>CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ./checkpoints/llava-hr-7b-sft-1024
Here is the command for chatting with LLaVA-HR without the need of Gradio interface.
python -m llava.serve.cli \ --model-path ./checkpoints/llava-hr-7b-sft-1024 \ --image-file "./assets/example.jpg"
If you find our paper and code useful in your research, please consider giving a star ⭐️ and citation 📝.
@article{luo2024feast, title={Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models}, author={Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji}, journal={arXiv preprint arXiv:2403.03003}, year={2024} }
[

职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时 响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号