LLaVA-HR

LLaVA-HR

混合分辨率适应技术助力多模态大模型

LLaVA-HR是一个采用混合分辨率适应技术的多模态大语言模型。它支持1536x1536的高分辨率图像输入,提高了细粒度视觉语言任务的性能。该模型在保持与LLaVA-1.5相近训练成本的同时,在多个基准测试中表现出色。LLaVA-HR为研究社区提供了一个新的基线,展示了混合分辨率适应方法在提升多模态模型性能方面的潜力。

LLaVA-HR大语言模型多模态高分辨率视觉语言任务Github开源项目
<p align="center"> <img src="./assets/logo.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center">🌋🌋 <a href="https://arxiv.org/abs/xxx">LLaVA-HR: High-Resolution Large Language-Vision Assistant </a>🌋🌋</h2> <h5 align="center">

hf_space hf_space arXiv License Hits GitHub issues GitHub closed issues <br>

</h5>

✨Technical Report:

Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models <br> Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji <br>arXiv <br>

This repository contains the implementation of LLaVA-HR, a strong and efficient MLLM powered by our mixture-of-resolution adaptation. The features of LLaVA-HR include:

  • High Image Resolutions: LLaVA-HR supports up to 1536 x 1536 image resolutions, which boosts the performance of fine-grained vision-language tasks, such as TextVQA.
  • Remarkable Efficiency: LLaVA-HR maintains the similar training costs with LLaVA-1.5, e.g., ~20 hours on 8 A100s. Its inference speed is also fast as existing low-resolution MLLMs ! Check out our paper.
  • Strong Performance: LLaVA-HR outperforms existing MLLMs on multiple benchmarks, e.g., 82.6 on VQAv2. LLaVA-HR is comparable to LLaVA-NexT using the training data of LLaVA-1.5 ! Check out our model zoo.
  • Fair Comparison: LLaVA-HR adopts the same training data and configurations with LLaVA-1.5, which means that the performance gains all come from our mixture-of-resolution adaptation. We hope that LLaVA-HR can be a strong baseline for the community.
<div align="center"> <img src="./assets/fig1.png" width="55%"> </div>

📣 News

  • [2024.04.16] We fix the evaluation bug for SQA and MMVet. Now, LLaVA-HR-X can achieve 40.3 score in MMVet! checking our model zoo.

  • [2024.03.06] 🔥🔥🔥 We release LLaVA-HR, a high-resolution MLLM with strong performance and remarkable efficiency. LLaVA-HR greatly outperforms LLaVA-1.5 on multiple benchmarks, checking our model zoo.

Table of Contents

Install

  1. Clone this repository and navigate to LLaVA-HR folder
git clone https://github.com/luogen1996/LLaVA-HR.git cd LLaVA-HR
  1. Install Package
conda create -n llava-hr python=3.10 -y conda activate llava-hr pip install --upgrade pip # enable PEP 660 support pip install -e .
  1. Install additional packages for training cases
pip install ninja
pip install flash-attn --no-build-isolation

Model Zoo

VersionSizeResCheckpointVQAv2GQAVizWizTextVQAOKVQAOCRVQASQAMMEPOPESEEDMM-Vet
LLaVA-1.513B336liuhaotian/llava-v1.5-13b80.063.353.661.3--71.61531.385.961.635.4
LLaVA-HR7B1024favor123/llava-hr-7b-sft-102481.964.248.767.158.968.467.91554.987.664.231.5
LLaVA-HR-X13B1024favor123/llava-hr-13b-x-sft-102482.665.256.670.961.569.069.71487.388.065.340.3

Training

Our training pipeline and datasets are directly borrowed from LLaVA-v1.5. The training consists of two stages:

  • Low-resolution pretraining: train a projector on a subset of ∼558K image-text pairs to connect a frozen pretrained vision encoder and a frozen LLM.
  • High-resolution instruction tuning: adopt our MR-Adaptation to accommodate high-resolution images, and fine-tune the whole MLLM with multimodal instruction data.
<details> <summary>Training scripts </summary>

Stage-1: Low-resolution Pretraining

Please download the caption annotations blip_laion_cc_sbu_558k.json and images from here. Move the downloaded files to the /data/data folder. Then run the following command to start the training process:

bash scripts/v1_5/pretrain_llava_hr.sh

We recommend to directly use our pre-trained projector for better reproducing our results.

VersionVision EncoderProjectionPretrain DataPretraining scheduleDownload
LLaVA-HR-7bCLIP-L & ConvNeXt-LMLP-2xLCS-558K1eprojector
LLaVA-HR-X-13bCLIP-L & ConvNeXt-XXLMLP-2xLCS-558K1eprojector

Stage-2: High-resolution Instruction Tuning

Please download the annotation file of the mixed instruction tuning data llava_v1_5_mix665k.json, and download the images from constituting datasets:

After downloading all of them, organize the data as follows in ./playground/data:

├── coco
│   └── train2017
├── gqa
│   └── images
├── ocr_vqa
│   └── images
├── textvqa
│   └── train_images
└── vg
    ├── VG_100K
    └── VG_100K_2

Then, you can start the training process by the following script. If you use your custom dataset, you can refer to llava_v1_5_mix665k.json to format your data.

bash scripts/v1_5/train_eval_llava_hr.sh

Instruction tuning takes around 16 hours for LLaVA-HR-7B on 8x A100s (80G).

</details>

Evaluation

We follow LLaVA-v1.5 to conduct evaluations. you should download eval.zip and unzip it to ./playground/data/eval. Besides, we further implement the evaluation of coco-caption, refcoco, vizwiz,ocrvqa and okvqa. Please refer to Evaluation.md to prepare the data.

Then, your can run our evaluation script bash scripts/v1_5/eval.sh.

🤗 Demo

Gradio Web UI <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>

Here are the steps to run the demo on your local devices.

<details> <summary>Demo scripts </summary> To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*. #### Launch a controller ```Shell python -m llava.serve.controller --host 0.0.0.0 --port 10000 ```

Launch a gradio web server.

python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload

You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.

Launch a model worker

This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path.

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ./checkpoints/llava-hr-7b-sft-1024

Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.

You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller the same, and modify the --port and --worker to a different port number for each worker.

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>

If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the --device flag: --device mps.

Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)

If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with CUDA_VISIBLE_DEVICES. Below is an example of running with the first two GPUs.

CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ./checkpoints/llava-hr-7b-sft-1024
</details>

CLI Inference

Here is the command for chatting with LLaVA-HR without the need of Gradio interface.

python -m llava.serve.cli \ --model-path ./checkpoints/llava-hr-7b-sft-1024 \ --image-file "./assets/example.jpg"

👍 Acknowledgement

  • LLaVA The codebase we built upon, and our baseline LLaVA-1.5 already has strong multimodal capabilities.

🔒 License

  • The majority of this project is released under the Apache 2.0 license as found in the LICENSE file.
  • The service is a research preview intended for non-commercial use only, subject to the model License of LLaMA and Terms of Use of the data generated by OpenAI. Please contact us if you find any potential violation.

✏️ Citation

If you find our paper and code useful in your research, please consider giving a star ⭐️ and citation 📝.

@article{luo2024feast, title={Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models}, author={Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji}, journal={arXiv preprint arXiv:2403.03003}, year={2024} }

✨ Star History

[![Star

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多