混合分辨率适应技术助力多模态大模型
LLaVA-HR是一个采用混合分辨率适应技术的多模态大语言模型。它支持1536x1536的高分辨率图像输入,提高了细粒度视觉语言任务的性能。该模型在保持与LLaVA-1.5相近训练成本的同时,在多个基准测试中表现出色。LLaVA-HR为研究社区提供了一个新的基线,展示了混合分辨率适应方法在提升多模态模型性能方面的潜力。
✨Technical Report:
Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models <br> Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji <br>
<br>
This repository contains the implementation of LLaVA-HR, a strong and efficient MLLM powered by our mixture-of-resolution adaptation. The features of LLaVA-HR include:
[2024.04.16] We fix the evaluation bug for SQA and MMVet. Now, LLaVA-HR-X can achieve 40.3 score in MMVet! checking our model zoo.
[2024.03.06] 🔥🔥🔥 We release LLaVA-HR, a high-resolution MLLM with strong performance and remarkable efficiency. LLaVA-HR greatly outperforms LLaVA-1.5 on multiple benchmarks, checking our model zoo.
git clone https://github.com/luogen1996/LLaVA-HR.git cd LLaVA-HR
conda create -n llava-hr python=3.10 -y conda activate llava-hr pip install --upgrade pip # enable PEP 660 support pip install -e .
pip install ninja
pip install flash-attn --no-build-isolation
Version | Size | Res | Checkpoint | VQAv2 | GQA | VizWiz | TextVQA | OKVQA | OCRVQA | SQA | MME | POPE | SEED | MM-Vet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LLaVA-1.5 | 13B | 336 | liuhaotian/llava-v1.5-13b | 80.0 | 63.3 | 53.6 | 61.3 | - | - | 71.6 | 1531.3 | 85.9 | 61.6 | 35.4 |
LLaVA-HR | 7B | 1024 | favor123/llava-hr-7b-sft-1024 | 81.9 | 64.2 | 48.7 | 67.1 | 58.9 | 68.4 | 67.9 | 1554.9 | 87.6 | 64.2 | 31.5 |
LLaVA-HR-X | 13B | 1024 | favor123/llava-hr-13b-x-sft-1024 | 82.6 | 65.2 | 56.6 | 70.9 | 61.5 | 69.0 | 69.7 | 1487.3 | 88.0 | 65.3 | 40.3 |
Our training pipeline and datasets are directly borrowed from LLaVA-v1.5. The training consists of two stages:
Please download the caption annotations blip_laion_cc_sbu_558k.json
and images from here. Move the downloaded files to the /data/data
folder. Then run the following command to start the training process:
bash scripts/v1_5/pretrain_llava_hr.sh
We recommend to directly use our pre-trained projector for better reproducing our results.
Version | Vision Encoder | Projection | Pretrain Data | Pretraining schedule | Download |
---|---|---|---|---|---|
LLaVA-HR-7b | CLIP-L & ConvNeXt-L | MLP-2x | LCS-558K | 1e | projector |
LLaVA-HR-X-13b | CLIP-L & ConvNeXt-XXL | MLP-2x | LCS-558K | 1e | projector |
Please download the annotation file of the mixed instruction tuning data llava_v1_5_mix665k.json, and download the images from constituting datasets:
.jpg
After downloading all of them, organize the data as follows in ./playground/data
:
├── coco
│ └── train2017
├── gqa
│ └── images
├── ocr_vqa
│ └── images
├── textvqa
│ └── train_images
└── vg
├── VG_100K
└── VG_100K_2
Then, you can start the training process by the following script. If you use your custom dataset, you can refer to llava_v1_5_mix665k.json
to format your data.
bash scripts/v1_5/train_eval_llava_hr.sh
Instruction tuning takes around 16 hours for LLaVA-HR-7B on 8x A100s (80G).
</details>We follow LLaVA-v1.5 to conduct evaluations. you should download eval.zip and unzip it to ./playground/data/eval
. Besides, we further implement the evaluation of coco-caption, refcoco, vizwiz,ocrvqa and okvqa. Please refer to Evaluation.md to prepare the data.
Then, your can run our evaluation script bash scripts/v1_5/eval.sh
.
Here are the steps to run the demo on your local devices.
<details> <summary>Demo scripts </summary> To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*. #### Launch a controller ```Shell python -m llava.serve.controller --host 0.0.0.0 --port 10000 ```python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path
.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ./checkpoints/llava-hr-7b-sft-1024
Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller
the same, and modify the --port
and --worker
to a different port number for each worker.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the --device
flag: --device mps
.
If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with CUDA_VISIBLE_DEVICES
. Below is an example of running with the first two GPUs.
</details>CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ./checkpoints/llava-hr-7b-sft-1024
Here is the command for chatting with LLaVA-HR without the need of Gradio interface.
python -m llava.serve.cli \ --model-path ./checkpoints/llava-hr-7b-sft-1024 \ --image-file "./assets/example.jpg"
If you find our paper and code useful in your research, please consider giving a star ⭐️ and citation 📝.
@article{luo2024feast, title={Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models}, author={Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji}, journal={arXiv preprint arXiv:2403.03003}, year={2024} }
[![Star
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事 务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线 下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同 需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基 于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生 成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号