<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/837dd3b7-2aea-43da-bf99-74dd5129f180.png" width="600px"></img>
<a href="https://discord.gg/xBPBXfcFHd"><img alt="加入我们的Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>
一个简洁但完整的<a href="https://openai.com/blog/clip/">CLIP</a>实现,包含了来自最近论文的各种实验性改进
$ pip install x-clip
import torch from x_clip import CLIP clip = CLIP( dim_text = 512, dim_image = 512, dim_latent = 512, num_text_tokens = 10000, text_enc_depth = 6, text_seq_len = 256, text_heads = 8, visual_enc_depth = 6, visual_image_size = 256, visual_patch_size = 32, visual_heads = 8, visual_patch_dropout = 0.5, # 图像 块dropout概率,用于Kaiming He的FLIP中以节省计算并改善最终结果 - 0.5是一个好值,0.75是可接受的上限 use_all_token_embeds = False, # 是否使用细粒度对比学习(FILIP) decoupled_contrastive_learning = True, # 使用解耦对比学习(DCL)目标函数,从InfoNCE损失的分母中移除正样本对(CLOOB + DCL) extra_latent_projection = True, # 是否为文本到图像和图像到文本的比较使用单独的投影(CLOOB) use_visual_ssl = True, # 是否对图像进行自监督学习 use_mlm = False, # 对文本使用掩码语言学习(MLM)(DeCLIP) text_ssl_loss_weight = 0.05, # 文本MLM损失的权重 image_ssl_loss_weight = 0.05 # 图像自监督学习损失的权重 ) # 模拟数据 text = torch.randint(0, 10000, (4, 256)) images = torch.randn(4, 3, 256, 256) # 训练 loss = clip( text, images, freeze_image_encoder = False, # 如果使用预训练的图像网络,是否冻结图像编码器,由LiT论文提出 return_loss = True # 需要设置为True以返回对比损失 ) loss.backward()
你也可以传入外部的视觉transformer或残差网络。你只需确保你的图像编码器返回形状为batch x seq x dim
的一组嵌入,并确保正确指定dim_image
为返回嵌入的维度。以下是使用vit_pytorch
中的视觉transformer的示例
$ pip install vit_pytorch>=0.25.6
import torch from x_clip import CLIP from vit_pytorch import ViT from vit_pytorch.extractor import Extractor base_vit = ViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 512, depth = 6, heads = 16, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) vit = Extractor( base_vit, return_embeddings_only = True ) clip = CLIP( image_encoder = vit, dim_image = 512, # 必须设置为与上面的视觉transformer相同的维度 dim_text = 512, dim_latent = 512, num_text_tokens = 10000, text_enc_depth = 6, text_seq_len = 256, text_heads = 8 ) text = torch.randint(0, 10000, (4, 256)) images = torch.randn(4, 3, 256, 256) loss = clip(text, images, return_loss = True) loss.backward()
最后,也可以外部定义文本transformer。目前,它需要返回包括CLS令牌在内的嵌入。
import torch from x_clip import CLIP, TextTransformer from vit_pytorch import ViT from vit_pytorch.extractor import Extractor base_vit = ViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 512, depth = 6, heads = 16, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) image_encoder = Extractor( base_vit, return_embeddings_only = True ) text_encoder = TextTransformer( dim = 512, num_tokens = 10000, max_seq_len = 256, depth = 6, heads = 8 ) clip = CLIP( image_encoder = image_encoder, text_encoder = text_encoder, dim_image = 512, dim_text = 512, dim_latent = 512 ) text = torch.randint(0, 10000, (4, 256)) images = torch.randn(4, 3, 256, 256) loss = clip(text, images, return_loss = True) loss.backward()
本仓库还支持多视图对比学习损失,如<a href="https://arxiv.org/abs/2110.05208">DeCLIP</a>中提出的。只需传入增强的文本和/或增强的图像,它就会自动计算,并按初始化时设置的multiview_loss_weight
进行加权。
例如:
import torch from x_clip import CLIP, TextTransformer from vit_pytorch import ViT from vit_pytorch.extractor import Extractor base_vit = ViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 512, depth = 6, heads = 16, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) image_encoder = Extractor( base_vit, return_embeddings_only = True ) text_encoder = TextTransformer( dim = 512, num_tokens = 10000, max_seq_len = 256 + 1, depth = 6, heads = 8 ) clip = CLIP( image_encoder = image_encoder, text_encoder = text_encoder, dim_image = 512, dim_text = 512, dim_latent = 512, extra_latent_projection = True, multiview_loss_weight = 0.1 # 将多视图对比损失的权重设为0.1 ) text = torch.randint(0, 10000, (4, 256)) images = torch.randn(4, 3, 256, 256) aug_text = torch.randint(0, 10000, (4, 256)) # 增强文本(回译或EDA),与text维度相同 aug_images = torch.randn(4, 3, 256, 256) # 增强图像,与上面的images维度相同 loss = clip( text, images, aug_text = aug_text, # 传入增强文本 aug_image = aug_images, # 传入增强图像 return_loss = True, freeze_image_encoder = True ) loss.backward()
你甚至可以传入多个增强文本或图像
# ... aug_texts = ( torch.randint(0, 10000, (4, 256)), torch.randint(0, 10000, (4, 256)), ) aug_images = ( torch.randn(4, 3, 256, 256), torch.randn(4, 3, 256, 256), ) loss = clip( text, images, aug_text = aug_texts, aug_image = aug_images, return_loss = True, freeze_image_encoder = True ) loss.backward()
你可以通过visual_ssl
关键字传入自己的视觉自监督学习模块,如下所示:
import torch from x_clip import CLIP from x_clip.visual_ssl import SimSiam from vit_pytorch import ViT from vit_pytorch.extractor import Extractor base_vit = ViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 512, depth = 6, heads = 16, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) image_encoder = Extractor( base_vit, return_embeddings_only = True ) visual_ssl = SimSiam( # 外部定义的SimSiam - 需要是一个接受与CLIP相同维度图像并返回标量损失的模块 image_encoder, image_size = 256, hidden_layer = -1 ) clip = CLIP( image_encoder = image_encoder, dim_image = 512, dim_text = 512, dim_latent = 512, use_mlm = True, visual_ssl = visual_ssl, # SSL模块传入CLIP use_all_token_embeds = False, extra_latent_projection = False, mlm_random_token_prob = 0.1 ) text = torch.randint(0, 10000, (4, 256)) images = torch.randn(4, 3, 256, 256) loss = clip(text, images, return_loss = True) loss.backward()
@misc{radford2021learning, title = {Learning Transferable Visual Models From Natural Language Supervision}, author = {Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, year = {2021}, eprint = {2103.00020}, archivePrefix = {arXiv}, primaryClass = {cs.CV} }
@misc{yao2021filip, title = {FILIP: Fine-grained Interactive Language-Image Pre-Training}, author = {Lewei Yao and Runhui Huang and Lu Hou and Guansong Lu and Minzhe Niu and Hang Xu and Xiaodan Liang and Zhenguo Li and Xin Jiang and Chunjing Xu}, year = {2021}, eprint = {2111.07783}, archivePrefix = {arXiv}, primaryClass = {cs.CV} }
@misc{fürst2021cloob, title = {CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP}, author = {Andreas Fürst and Elisabeth Rumetshofer and Viet Tran and Hubert Ramsauer and Fei Tang and Johannes Lehner and David Kreil and Michael Kopp and Günter Klambauer and Angela Bitto-Nemling and Sepp Hochreiter}, year = {2021}, eprint = {2110.11316}, archivePrefix = {arXiv}, primaryClass = {cs.LG} }
@misc{yeh2021decoupled, title = {解耦对比学习}, author = {叶骏晓 and 洪承耀 and 许彦齐 and 刘庭伦 and 陈宇北 and Yann LeCun}, year = {2021}, eprint = {2110.06848}, archivePrefix = {arXiv}, primaryClass = {cs.LG} }
@misc{zhai2021lit, title = {LiT: 使用锁定图像文本微调进行零样本迁移}, author = {翟晓华 and 王笑 and Basil Mustafa and Andreas Steiner and Daniel Keysers and Alexander Kolesnikov and Lucas Beyer}, year = {2021}, eprint = {2111.07991}, archivePrefix = {arXiv}, primaryClass = {cs.CV} }
@misc{li2021supervision, title = {监督无处不在:一种数据高效的对比语言-图像预训练范式}, author = {李阳光 and 梁峰 and 赵立晨 and 崔宇峰 and 欧阳万里 and 邵静 and 于凤伟 and 颜俊杰}, year = {2021}, eprint = {2110.05208}, archivePrefix = {arXiv}, primaryClass = {cs.CV} }
@Article{mu2021slip, author = {Norman Mu and Alexander Kirillov and David Wagner and 谢赛宁}, title = {SLIP: 自监督遇上语言-图像预训练}, journal = {arXiv预印本 arXiv:2112.12750}, year = {2021}, }
@misc{su2021roformer, title = {RoFormer: 具有旋转位置嵌入的增强型Transformer}, author = {苏剑林 and 卢钰 and 潘胜峰 and 温博 and 刘云峰}, year = {2021}, eprint = {2104.09864}, archivePrefix = {arXiv}, primaryClass = {cs.CL} }
@inproceedings{anonymous2022normformer, title = {NormFormer: 通过额外归一化改进Transformer预训练}, author = {匿名}, booktitle = {提交至第十届国际学习表示会议}, year = {2022}, url = {https://openreview.net/forum?id=GMYWzWztDx5}, note = {审核中} }
@inproceedings{Li2022ScalingLP, title = {通过掩码扩展语言-图像预训练}, author = {李扬豪 and 范浩琦 and 胡荣航 and Christoph Feichtenhofer and 何恺明}, year = {2022} }
@article{Liu2022PatchDropoutEV, title = {PatchDropout: 使用补丁丢弃来节约视觉Transformer资源}, author = {刘悦 and Christos Matsoukas and Fredrik Strand and Hossein Azizpour and Kevin Smith}, journal = {ArXiv}, year = {2022}, volume = {abs/2208.07220} }
@misc{shi2023enhance, title = {通过表示相似性正则化增强音频生成的可控性}, author = {石阳阳 and Gael Le Lan and Varun Nagaraja and 倪昭恒 and 梅鑫浩 and 张义 and Forrest Iandola and 刘洋 and Vikas Chandra}, year = {2023}, eprint = {2309.08773}, archivePrefix = {arXiv}, primaryClass = {cs.SD} }
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场 景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储 和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号