speculative-decoding

speculative-decoding

推测解码技术,优化大型语言模型推理速度

该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。

Speculative Decoding大语言模型性能优化推理加速自然语言处理Github开源项目

<img src="./speculative-decoding.png" width="500px"></img>

Speculative Decoding

Explorations into some recent techniques surrounding <a href="https://arxiv.org/abs/2211.17192">speculative decoding</a>

Also have a few ideas of my own that I will try and share in this repository, if they work. The goal is to initially use it to speed up the text-to-semantic decoder in <a href="https://github.com/lucidrains/spear-tts-pytorch">Spear-TTS</a>

Appreciation

  • <a href="https://stability.ai/">StabilityAI</a> and <a href="https://huggingface.co/">🤗 Huggingface</a> for the generous sponsorship, as well as my other sponsors, for affording me the independence to open source current artificial intelligence techniques.

Todo

  • in early exit scheme, cache the hidden layer during spec decoding, as small and large models share the same first few layers

  • for early exit, allow an extra transformer block head (separate from main transformer stem)

  • figure out batched spec decoding - different rows may advance at different rates

  • further optimize batched spec decoding, as losing some performance from all the indexing - seems like it will take some work for this technique to be actually usable

  • make batched spec decoding work with early exit strategy

  • complete speculative sampling with prophet transformer idea - seems to work well! 🙌

  • get some wandb charts and see how prophet compares with early exit strategy, share on repository

  • also run experiments to see if prophet transformer brings any benefit to main model loss. original prophet paper only did a simple linear projection

  • for early exit strategy, try randomly summing last cached embedding back to the same model (a la alphafold2 recycling), randomly cropped along sequence length, and train early exit loss this way. see if one can improve the gamma this way

  • dedicate a morning to microoptimizations

Citations

@inproceedings{Leviathan2022FastIF, title = {Fast Inference from Transformers via Speculative Decoding}, author = {Yaniv Leviathan and Matan Kalman and Y. Matias}, booktitle = {International Conference on Machine Learning}, year = {2022}, url = {https://api.semanticscholar.org/CorpusID:254096365} }
@inproceedings{sun2023spectr, title = {SpecTr: Fast Speculative Decoding via Optimal Transport}, author = {Ziteng Sun and Ananda Theertha Suresh and Jae Hun Ro and Ahmad Beirami and Himanshu Jain and Felix Yu and Michael Riley and Sanjiv Kumar}, booktitle = {Workshop on Efficient Systems for Foundation Models @ ICML2023}, year = {2023}, url = {https://openreview.net/forum?id=d0mGsaheuT} }
@article{Chen2023AcceleratingLL, title = {Accelerating Large Language Model Decoding with Speculative Sampling}, author = {Charlie Chen and Sebastian Borgeaud and Geoffrey Irving and Jean-Baptiste Lespiau and L. Sifre and John M. Jumper}, journal = {ArXiv}, year = {2023}, volume = {abs/2302.01318}, url = {https://api.semanticscholar.org/CorpusID:256503945} }
@article{Yan2020ProphetNetPF, title = {ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training}, author = {Yu Yan and Weizhen Qi and Yeyun Gong and Dayiheng Liu and Nan Duan and Jiusheng Chen and Ruofei Zhang and Ming Zhou}, journal = {ArXiv}, year = {2020}, volume = {abs/2001.04063}, url = {https://api.semanticscholar.org/CorpusID:210164665} }
@article{Zhang2023DraftV, title = {Draft \& Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding}, author = {Jinchao Zhang and Jue Wang and Huan Li and Lidan Shou and Ke Chen and Gang Chen and Sharad Mehrotra}, journal = {ArXiv}, year = {2023}, volume = {abs/2309.08168}, url = {https://api.semanticscholar.org/CorpusID:262013673} }
@misc{medusa, author = {Tianle Cai and Yuhong Li and Zhengyang Geng and Hongwu Peng and Tri Dao}, title = {Medusa: Simple Framework for Accelerating LLM Generation with Multiple Decoding Heads}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/FasterDecoding/Medusa}}, }

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多