hatespeechdata

hatespeechdata

多语言仇恨言论数据集汇总与研究资源

该项目汇集了涵盖多种语言的仇恨言论、在线辱骂和攻击性语言数据集。收录内容包括来自不同平台的文本、图像和音频数据。项目旨在为自然语言处理系统提供训练资源,以提升有害内容检测能力。此外,项目还提供关键词列表和贡献指南,为研究人员和开发者改进在线内容审核和仇恨言论检测技术提供支持。

仇恨言论数据集在线辱骂多语言社交媒体Github开源项目

Hate Speech Dataset Catalogue

<!-- **We are working on a [ckan instance](http://ckan.hatespeechdata.com) -- please give it a look! Contributions welcome :)** -->

This page catalogues datasets annotated for hate speech, online abuse, and offensive language. They may be useful for e.g. training a natural language processing system to detect this language.

The list is maintained by Leon Derczynski, Bertie Vidgen, Hannah Rose Kirk, Pica Johansson, Yi-Ling Chung, Mads Guldborg Kjeldgaard Kongsbak, Laila Sprejer, and Philine Zeinert.

We provide a list of datasets and keywords. If you would like to contribute to our catalogue or add your dataset, please see the instructions for contributing.

If you use these resources, please cite (and read!) our paper: Directions in Abusive Language Training Data: Garbage In, Garbage Out. And if you would like to find other resources for researching online hate, visit The Alan Turing Institute's Online Hate Research Hub or read The Alan Turing Institute's Reading List on Online Hate and Abuse Research.

If you're looking for a good paper on online hate training datasets (beyond our paper, of course!) then have a look at 'Resources and benchmark corpora for hate speech detection: a systematic review' by Poletto et al. in Language Resources and Evaluation.

Please send contributions via github pull request. You can do this by visiting the source code on github and clicking the edit icon (a pencil, above the text, on the right) - more details below. There's a commented-out markdown template at the top of this file. Accompanying data statements preferred for all corpora.

<a id="Datasets-header"></a>

Datasets Table of Contents

List of datasets

<!-- dataset template ### TITLE * Link to publication: [url](url) - link to the documentation and/or a data statement about the data * Link to data: [url](url) - direct download is preferred, e.g. a link straight to a .zip file * Task description: How the task is framed in this data, e.g. "Binary (Hate, Not)", "Hierarchical", "Three-class (Hate speech, Offensive language, None)" * Details of task: Free-text description of the task this data models, e.g. "Misogyny detection on social media in Danish" * Size of dataset: Give the number of instances of abusive/non-abusive/other items * Percentage abusive: e.g. 1.2% * Language: e.g. Arabic * Level of annotation: What is an "instance", in this dataset? e.g. Posts, User, Conversation, ... * Platform: e.g. twitter, snapchat, .. * Medium: text / image / audio / ... * Reference: Give a bibliographic reference for the data (if there is one), with title, author, year, venue etc -->

<a id="Albanian-header"></a>

Albanian

Detecting Abusive Albanian

  • Link to publication: https://arxiv.org/abs/2107.13592
  • Link to data: https://doi.org/10.6084/m9.figshare.19333298.v1
  • Task description: Hierarchical (offensive/not; untargeted/targeted; person/group/other)
  • Details of task: Detect and categorise abusive language in social media data
  • Size of dataset: 11 874
  • Percentage abusive: 13.2%
  • Language: Albanian
  • Level of annotation: Posts
  • Platform: Instagram, Youtube
  • Medium: Text
  • Reference: Nurce, E., Keci, J., Derczynski, L., 2021. Detecting Abusive Albanian. arXiv:2107.13592
  • Dataset reader: 🤗 strombergnlp/shaj

<a id="Arabic-header"></a>

Arabic

Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language

  • Link to publication: https://arxiv.org/abs/2103.10195
  • Link to data: https://drive.google.com/file/d/1mM2vnjsy7QfUmdVUpKqHRJjZyQobhTrW/view
  • Task description: Binary (misogyny/none) and Multi-class (none, discredit, derailing, dominance, stereotyping & objectification, threat of violence, sexual harassment, damning)
  • Details of task: Introducing an Arabic Levantine Twitter dataset for Misogynistic language
  • Size of dataset: 6,603 direct tweet replies
  • Percentage abusive: 48.76%
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Hala Mulki and Bilal Ghanem. 2021. Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language. In Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 154–163, Kyiv, Ukraine (Virtual). Association for Computational Linguistics

Are They our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere

  • Link to publication: https://ieeexplore.ieee.org/document/8508247
  • Link to data: https://github.com/nuhaalbadi/Arabic_hatespeech
  • Task description: Binary (Hate, Not)
  • Details of task: Religious subcategories
  • Size of dataset: 6,136
  • Percentage abusive: 0.45
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Albadi, N., Kurdi, M. and Mishra, S., 2018. Are they Our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere. In: International Conference on Advances in Social Networks Analysis and Mining. Barcelona, Spain: IEEE, pp.69-76.

Multilingual and Multi-Aspect Hate Speech Analysis (Arabic)

  • Link to publication: https://arxiv.org/abs/1908.11049
  • Link to data: https://github.com/HKUST-KnowComp/MLMA_hate_speech
  • Task description: Detailed taxonomy with cross-cutting attributes: Hostility, Directness, Target Attribute, Target Group, How annotators felt on seeing the tweet.
  • Details of task: Gender, Sexual orientation, Religion, Disability
  • Size of dataset: 3,353
  • Percentage abusive: 0.64
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Ousidhoum, N., Lin, Z., Zhang, H., Song, Y. and Yeung, D., 2019. Multilingual and Multi-Aspect Hate Speech Analysis. ArXiv,.

L-HSAB: A Levantine Twitter Dataset for Hate Speech and Abusive Language

  • Link to publication: https://www.aclweb.org/anthology/W19-3512
  • Link to data: https://github.com/Hala-Mulki/L-HSAB-First-Arabic-Levantine-HateSpeech-Dataset
  • Task description: Ternary (Hate, Abusive, Normal)
  • Details of task: Group-directed + Person-directed
  • Size of dataset: 5,846
  • Percentage abusive: 0.38
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Mulki, H., Haddad, H., Bechikh, C. and Alshabani, H., 2019. L-HSAB: A Levantine Twitter Dataset for Hate Speech and Abusive Language. In: Proceedings of the Third Workshop on Abusive Language Online. Florence, Italy: Association for Computational Linguistics, pp.111-118.

Abusive Language Detection on Arabic Social Media (Twitter)

Abusive Language Detection on Arabic Social Media (Al Jazeera)

  • Link to publication: https://www.aclweb.org/anthology/W17-3008
  • Link to data: http://alt.qcri.org/~hmubarak/offensive/AJCommentsClassification-CF.xlsx
  • Task description: Ternary (Obscene, Offensive but not obscene, Clean)
  • Details of task: Incivility
  • Size of dataset: 32,000
  • Percentage abusive: 0.81
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: AlJazeera
  • Medium: Text
  • Reference: Mubarak, H., Darwish, K. and Magdy, W., 2017. Abusive Language Detection on Arabic Social Media. In: Proceedings of the First Workshop on Abusive Language Online. Vancouver, Canada: Association for Computational Linguistics, pp.52-56.

Dataset Construction for the Detection of Anti-Social Behaviour in Online Communication in Arabic

<a id="Bengali-header"></a>

Bengali

Hate Speech Detection in the Bengali language: A Dataset and its Baseline Evaluation

  • Link to publication: https://arxiv.org/pdf/2012.09686.pdf
  • Link to data: https://www.kaggle.com/naurosromim/bengali-hate-speech-dataset
  • Task description: Binary (hateful, not)
  • Details of task: Several categories: sports, entertainment, crime, religion, politics, celebrity and meme
  • Size of dataset: 30,000
  • Percentage abusive: 0.33
  • Language: Bengali
  • Level of annotation: Posts
  • Platform: Youtube and Facebook
  • Medium: Text
  • Reference: Romim, N., Ahmed, M., Talukder, H., & Islam, M. S. (2021). Hate speech detection in the bengali language: A dataset and its baseline evaluation. In Proceedings of International Joint Conference on Advances in Computational Intelligence (pp. 457-468). Springer, Singapore.

<a id="Chinese-header"></a>

Chinese

SWSR: A Chinese Dataset and Lexicon for Online Sexism Detection

  • Link to publication: https://www.sciencedirect.com/science/article/abs/pii/S2468696421000604#fn1
  • Link to data: https://doi.org/10.5281/zenodo.4773875
  • Task description: Binary (Sexist, Non-sexist), Categories of sexism (Stereotype based on Appearance, Stereotype based on Cultural Background, MicroAggression, and Sexual Offense), Target of sexism (Individual or Generic)
  • Details of task: Sexism detection on social media in Chinese
  • Size of dataset: 8,969 comments from 1,527 weibos
  • Percentage abusive: 34.5%
  • Language: Chinese
  • Level of annotation: Posts
  • Platform: Sina Weibo
  • Medium: Text
  • Reference: Aiqi Jiang, Xiaohan Yang, Yang Liu, Arkaitz Zubiaga, SWSR: A Chinese dataset and lexicon for online sexism detection, Online Social Networks and Media, Volume 27, 2022, 100182, ISSN 2468-6964.

<a id="Croatian-header"></a>

Croatian

CoRAL: a Context-aware Croatian Abusive Language Dataset

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多