message-io

message-io

高效易用的事件驱动网络库,支持多协议通信

message-io是一个高效的事件驱动网络库,内部处理操作系统套接字,提供简洁的事件消息API。支持TCP、UDP和WebSocket等多种传输协议,可扩展性强,能管理数千个活跃连接。该库抽象了传输层细节,让开发者专注于消息和端点处理。采用非阻塞套接字和零拷贝技术,性能优异,适合构建高性能网络应用。message-io简化了网络编程,使开发者能更容易地实现可靠的网络通信功能。

message-io网络库事件驱动多协议支持高性能Github开源项目

<p align="center"> <img src="docs/images/message-io-title.png" title="message-io"> </p>

message-io is a fast and easy-to-use event-driven network library. The library handles the OS socket internally and offers a simple event message API to the user. It also allows you to make an adapter for your own transport protocol following some rules, delegating the tedious asynchrony and thread management to the library.

<p align="center"> <img src="https://docs.google.com/drawings/d/e/2PACX-1vSPmycMsWoQq60MPEODcakFQVPkDwVy98AnduTswFNPGBB5dpbIsSCHHBhS2iEuSUtbVaYQb7zgfgjO/pub?w=653&h=305" width="653"/> </p>

If you find a problem using the library or you have an idea to improve it, do not hesitate to open an issue. Any contribution is welcome! And remember: more caffeine, more productive!

Motivation

Managing sockets is hard because you need to fight with threads, concurrency, full duplex, encoding, IO errors that come from the OS (which are really difficult to understand in some situations), etc. If you make use of non-blocking sockets, it adds a new layer of complexity: synchronize the events that come asynchronously from the Operating System.

message-io offers an easy way to deal with all these aforementioned problems, making them transparent for you, the programmer that wants to make an application with its own problems. For that, the library gives you a simple API with two concepts to understand: messages (the data you send and receive), and endpoints (the recipients of that data). This abstraction also offers the possibility to use the same API independently of the transport protocol used. You could change the transport of your application in literally one line.

Features

  • Highly scalable: non-blocking sockets that allow for the management of thousands of active connections.
  • Multiplatform: see mio platform support.
  • Multiple transport protocols (docs):
    • TCP: stream and framed mode (to deal with messages instead of stream)
    • UDP, with multicast option
    • WebSocket: plain and secure#102 option using tungstenite-rs (wasm is not supported but planned).
  • Custom FIFO events with timers and priority.
  • Easy, intuitive and consistent API:
    • Follows KISS principle.
    • Abstraction from transport layer: don't think about sockets, think about messages and endpoints.
    • Only two main entities to use:
      • a NodeHandler to manage all connections (connect, listen, remove, send) and signals (timers, priority).
      • a NodeListener to process all signals and events from the network.
    • Forget concurrency problems: handle all connection and listeners from one thread: "One thread to rule them all".
    • Easy error handling: do not deal with dark internal std::io::Error when sending/receiving from the network.
  • High performance (see the benchmarks):
    • Write/read messages with zero-copy. You write and read directly from the internal OS socket buffer without any copy in the middle by the library.
    • Full duplex: simultaneous reading/writing operations over the same internal OS socket.
  • Customizable: message-io doesn't have the transport you need? Easily add an adapter.

Documentation

Getting started

Add to your Cargo.toml (all transports included by default):

[dependencies] message-io = "0.18"

If you only want to use a subset of the available transport battery, you can select them by their associated features tcp, udp, and websocket. For example, in order to include only TCP and UDP, add to your Cargo.toml:

[dependencies] message-io = { version = "0.18", default-features = false, features = ["tcp", "udp"] }

All in one: TCP, UDP and WebSocket echo server

The following example is the simplest server that reads messages from the clients and responds to them with the same message. It is able to offer the "service" for 3 differents protocols at the same time.

use message_io::node::{self}; use message_io::network::{NetEvent, Transport}; fn main() { // Create a node, the main message-io entity. It is divided in 2 parts: // The 'handler', used to make actions (connect, send messages, signals, stop the node...) // The 'listener', used to read events from the network or signals. let (handler, listener) = node::split::<()>(); // Listen for TCP, UDP and WebSocket messages at the same time. handler.network().listen(Transport::FramedTcp, "0.0.0.0:3042").unwrap(); handler.network().listen(Transport::Udp, "0.0.0.0:3043").unwrap(); handler.network().listen(Transport::Ws, "0.0.0.0:3044").unwrap(); // Read incoming network events. listener.for_each(move |event| match event.network() { NetEvent::Connected(_, _) => unreachable!(), // Used for explicit connections. NetEvent::Accepted(_endpoint, _listener) => println!("Client connected"), // Tcp or Ws NetEvent::Message(endpoint, data) => { println!("Received: {}", String::from_utf8_lossy(data)); handler.network().send(endpoint, data); }, NetEvent::Disconnected(_endpoint) => println!("Client disconnected"), //Tcp or Ws }); }

Echo client

The following example shows a client that can connect to the previous server. It sends a message each second to the server and listen its echo response. Changing the Transport::FramedTcp to Udp or Ws will change the underlying transport used.

use message_io::node::{self, NodeEvent}; use message_io::network::{NetEvent, Transport}; use std::time::Duration; enum Signal { Greet, // Any other app event here. } fn main() { let (handler, listener) = node::split(); // You can change the transport to Udp or Ws (WebSocket). let (server, _) = handler.network().connect(Transport::FramedTcp, "127.0.0.1:3042").unwrap(); listener.for_each(move |event| match event { NodeEvent::Network(net_event) => match net_event { NetEvent::Connected(_endpoint, _ok) => handler.signals().send(Signal::Greet), NetEvent::Accepted(_, _) => unreachable!(), // Only generated by listening NetEvent::Message(_endpoint, data) => { println!("Received: {}", String::from_utf8_lossy(data)); }, NetEvent::Disconnected(_endpoint) => (), } NodeEvent::Signal(signal) => match signal { Signal::Greet => { // computed every second handler.network().send(server, "Hello server!".as_bytes()); handler.signals().send_with_timer(Signal::Greet, Duration::from_secs(1)); } } }); }

Test it yourself!

Clone the repository and test the Ping Pong example (similar to the README example but more vitaminized).

Run the server:

cargo run --example ping-pong server tcp 3456

Run the client:

cargo run --example ping-pong client tcp 127.0.0.1:3456

You can play with it by changing the transport, running several clients, disconnecting them, etc. See more here.

Do you need a transport protocol that message-io doesn't have? Add an adapter! <span id="custom-adapter"/>

message-io offers two kinds of API. The user API that talks to message-io itself as a user of the library, and the internal adapter API for those who want to add their protocol adapters into the library.

<p align="center"> <img src="https://docs.google.com/drawings/d/e/2PACX-1vRMwZsL8Tki3Sq9Zc2hpZ8L3bJPuj38zgiMKzBCXsX3wrPnfyG2hp-ijmDFUPqicEQZFeyUFxhcdJMB/pub?w=546&h=276"/> </p>

If a transport protocol can be built in top of mio (most of the existing protocol libraries can), then you can add it to message-io really easily:

  1. Add your adapter file in src/adapters/<my-transport-protocol>.rs that implements the traits that you find here. It contains only 8 mandatory functions to implement (see the template), and it takes arround 150 lines to implement an adapter.

  2. Add a new field in the Transport enum found in src/network/transport.rs to register your new adapter.

That's all. You can use your new transport with the message-io API like any other.

Oops! one more step: make a Pull Request so everyone can use it :)

Open source projects using message-io <span id="app-list"/>

  • Termchat Terminal chat through the LAN with video streaming and file transfer.
  • Egregoria Contemplative society simulation.
  • Project-Midas Distributed network based parallel computing system.
  • AsciiArena Terminal multiplayer death match game (alpha).
  • LanChat LanChat flutter + rust demo.

Does your awesome project use message-io? Make a Pull Request and add it to the list!

Is message-io for me?

message-io has the main goal to keep things simple. This is great, but sometimes this point of view could make more complex the already complex things.

For instance, message-io allows handling asynchronous network events without using an async/await pattern. It reduces the complexity to handle income messages from the network, which is great. Nevertheless, the applications that read asynchronous messages tend to perform asynchronous tasks over these events too. This asynchronous inheritance can easily be propagated to your entire application being difficult to maintain or scale without an async/await pattern. In those cases, maybe tokio could be a better option. You need to deal with more low-level network stuff but you gain in organization and thread/resource management.

A similar issue can happen regarding the node usage of message-io. Because a node can be used independently as a client/server or both, you can easily start to make peer to peer applications. In fact, this is one of the intentions of message-io. Nevertheless, if your goal scales, will appear problems related to this patter to deal with, and libraries such as libp2p come with a huge battery of tools to help to archive that goal.

Of course, this is not a disclaiming about the library usage (I use it!), it is more about being honest about its capabilities, and to guide you to the right tool depending on what are you looking for.

To summarize:

  • If you have a medium complex network problem: make it simpler with message-io!
  • If you have a really complex network problem: use tokio, libp2p or others, to have more control over

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多