s6-overlay

s6-overlay

Docker容器的轻量级进程管理与初始化框架

s6-overlay是一套轻量级工具集,为Docker容器提供s6作为PID 1和进程监督器。它实现了稳定的初始化、有序的关闭序列、多进程管理和日志自动轮换。适用于各类基础镜像,通过小型tar.xz文件分发,有效控制镜像层数。s6-overlay简化了容器内进程管理,提高了容器的可靠性和可维护性。

s6-overlayDocker进程管理容器初始化服务脚本Github开源项目

Table of Contents

s6-overlay Build Status

s6-overlay is an easy-to-install (just extract a tarball or two!) set of scripts and utilities allowing you to use existing Docker images while using s6 as a pid 1 for your container and process supervisor for your services.

Quickstart

Build the following Dockerfile and try it out:

# Use your favorite image
FROM ubuntu
ARG S6_OVERLAY_VERSION=3.2.0.0

RUN apt-get update && apt-get install -y nginx xz-utils
RUN echo "daemon off;" >> /etc/nginx/nginx.conf
CMD ["/usr/sbin/nginx"]

ADD https://github.com/just-containers/s6-overlay/releases/download/v${S6_OVERLAY_VERSION}/s6-overlay-noarch.tar.xz /tmp
RUN tar -C / -Jxpf /tmp/s6-overlay-noarch.tar.xz
ADD https://github.com/just-containers/s6-overlay/releases/download/v${S6_OVERLAY_VERSION}/s6-overlay-x86_64.tar.xz /tmp
RUN tar -C / -Jxpf /tmp/s6-overlay-x86_64.tar.xz
ENTRYPOINT ["/init"]
docker-host $ docker build -t demo .
docker-host $ docker run --name s6demo -d -p 80:80 demo
docker-host $ docker top s6demo acxf
PID                 TTY                 STAT                TIME                COMMAND
11735               ?                   Ss                  0:00                \_ s6-svscan
11772               ?                   S                   0:00                \_ s6-supervise
11773               ?                   Ss                  0:00                | \_ s6-linux-init-s
11771               ?                   Ss                  0:00                \_ rc.init
11812               ?                   S                   0:00                | \_ nginx
11814               ?                   S                   0:00                | \_ nginx
11816               ?                   S                   0:00                | \_ nginx
11813               ?                   S                   0:00                | \_ nginx
11815               ?                   S                   0:00                | \_ nginx
11779               ?                   S                   0:00                \_ s6-supervise
11785               ?                   Ss                  0:00                | \_ s6-ipcserverd
11778               ?                   S                   0:00                \_ s6-supervise
docker-host $ curl --head http://127.0.0.1/
HTTP/1.1 200 OK
Server: nginx/1.18.0 (Ubuntu)
Date: Mon, 17 Jan 2022 13:33:58 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Mon, 17 Jan 2022 13:32:11 GMT
Connection: keep-alive
ETag: "61e56fdb-264"
Accept-Ranges: bytes

Compatibility with v2

If you're migrating from a previous version of s6-overlay (v2) to the new version (v3), you may need to make some changes to your services or the way you use s6-overlay in order for everything to work smoothly. This document tries to be accurate on how v3 works, but we have a separate page listing the main differences, and things you're likely to notice. Please read it if you're in this situation!

Goals

The project has the following goals:

  • Be usable on top of any Docker image
  • Make it easy to create new images, that will operate like any other images
  • Provide users with a turnkey s6 installation that will give them a stable pid 1, a fast and orderly init sequence and shutdown sequence, and the power of process supervision and automatically rotated logs.

Features

  • A simple init process which allows the end-user to execute tasks like initialization (cont-init.d), finalization (cont-finish.d) and their own services with dependencies between them
  • The s6-overlay provides proper PID 1 functionality
    • You'll never have zombie processes hanging around in your container, they will be properly cleaned up.
  • Multiple processes in a single container
  • Able to operate in "The Docker Way"
  • Usable with all base images - Ubuntu, CentOS, Fedora, Alpine, Busybox...
  • Distributed as a small number of .tar.xz files depending on what exact functionality you need - to keep your image's number of layers small.
  • A whole set of utilities included in s6 and s6-portable-utils. They include handy and composable utilities which make our lives much, much easier.
  • Log rotating out-of-the-box through logutil-service which uses s6-log under the hood.
  • Some support for Docker's USER directive, to run your whole process tree as a specific user. Not compatible with all features, details in the notes section.

The Docker Way?

One of the oft-repeated Docker mantras is "one process per container", but we disagree. There's nothing inherently bad about running multiple processes in a container. The more abstract "one thing per container" is our policy - a container should do one thing, such as "run a chat service" or "run gitlab." This may involve multiple processes, which is fine.

The other reason image authors shy away from process supervisors is they believe a process supervisor must restart failed services, meaning the Docker container will never die.

This does effectively break the Docker ecosystem - most images run one process that will exit when there's an error. By exiting on error, you allow the system administrator to handle failures however they prefer. If your image will never exit, you now need some alternative method of error recovery and failure notification.

Our policy is that if "the thing" fails, then the container should fail, too. We do this by determining which processes can restart, and which should bring down the container. For example, if cron or syslog fails, your container can most likely restart it without any ill effects, but if ejabberd fails, the container should exit so the system administrator can take action.

Our interpretation of "The Docker Way" is thus:

  • Containers should do one thing
  • Containers should stop when that thing stops

and our init system is designed to do exactly that. Your images will behave like other Docker images and fit in with the existing ecosystem of images.

See "Writing an optional finish script" under the Usage section for details on stopping "the thing."

Init stages

Our overlay init is a properly customized one to run appropriately in containerized environments. This section briefly explains how stages work but if you want to know how a complete init system should work, you can read this article: How to run s6-svscan as process 1

  1. stage 1: Its purpose is to set up the image to execute the supervision tree which will handle all the auxiliary services, and to launch stage 2. Stage 1 is where all the black magic happens, all the container setup details that we handle for you so that you don't have to care about them.
  2. stage 2: This is where most of the end-user provided files are meant to be executed:
    1. Execute legacy oneshot user scripts contained in /etc/cont-init.d.
    2. Run user s6-rc services declared in /etc/s6-overlay/s6-rc.d, following dependencies
    3. Copy legacy longrun user services (/etc/services.d) to a temporary directory and have s6 start (and supervise) them.
  3. stage 3: This is the shutdown stage. When the container is supposed to exit, it will:
    1. Send a TERM signal to all legacy longrun services and, if required, wait for them to exit.
    2. Bring down user s6-rc services in an orderly fashion.
    3. Run any finalization scripts contained in /etc/cont-finish.d.
    4. Send all remaining processes a TERM signal. There should not be any remaining processes anyway.
    5. Sleep for a small grace time, to allow stray processes to exit cleanly.
    6. Send all processes a KILL signal. Then the container exits.

Installation

s6-overlay comes as a set of tarballs that you can extract onto your image. The tarballs you need are a function of the image you use; most people will need the first two, and the other ones are extras you can use at your convenience.

  1. s6-overlay-noarch.tar.xz: this tarball contains the scripts implementing the overlay. We call it "noarch" because it is architecture- independent: it only contains scripts and other text files. Everyone who wants to run s6-overlay needs to extract this tarball.
  2. s6-overlay-x86_64.tar.xz: replace x86_64 with your system's architecture. This tarball contains all the necessary binaries from the s6 ecosystem, all linked statically and out of the way of your image's binaries. Unless you know for sure that your image already comes with all the packages providing the binaries used in the overlay, you need to extract this tarball.
  3. s6-overlay-symlinks-noarch.tar.xz: this tarball contains symlinks to the s6-overlay scripts so they are accessible via /usr/bin. It is normally not needed, all the scripts are accessible via the PATH environment variable, but if you have old user scripts containing shebangs such as #!/usr/bin/with-contenv, installing these symlinks will make them work.
  4. s6-overlay-symlinks-arch.tar.xz: this tarball contains symlinks to the binaries from the s6 ecosystem provided by the second tarball, to make them accessible via /usr/bin. It is normally not needed, but if you have old user scripts containing shebangs such as #!/usr/bin/execlineb, installing these symlinks will make them work.
  5. syslogd-overlay-noarch.tar.xz: this tarball contains definitions for a syslogd service. If you are running daemons that cannot log to stderr to take advantage of the s6 logging infrastructure, but hardcode the use of the old syslog() mechanism, you can extract this tarball, and your container will run a lightweight emulation of a syslogd daemon, so your syslog logs will be caught and stored to disk.

To install those tarballs, add lines to your Dockerfile that correspond to the functionality you want to install. For instance, most people would use the following:

ADD https://github.com/just-containers/s6-overlay/releases/download/v${S6_OVERLAY_VERSION}/s6-overlay-noarch.tar.xz /tmp
RUN tar -C / -Jxpf /tmp/s6-overlay-noarch.tar.xz
ADD https://github.com/just-containers/s6-overlay/releases/download/v${S6_OVERLAY_VERSION}/s6-overlay-x86_64.tar.xz /tmp
RUN tar -C / -Jxpf /tmp/s6-overlay-x86_64.tar.xz

Make sure to preserve file permissions when extracting (i.e. to use the -p option to tar.)

Usage

The project is distributed as a set of standard .tar.xz files, which you extract at the root of your image. (You need the xz-utils package for tar to understand .tar.xz files; it is available in every distribution, but not always in the default container images, so you may need to apt install xz-utils or apk add xz, or equivalent, before you can expand the archives.)

Afterwards, set your ENTRYPOINT to /init.

Right now, we recommend using Docker's ADD directive instead of running wget or curl in a RUN directive - Docker is able to handle the https URL when you use ADD, whereas your base image might not be able to use https, or might not even have wget or curl installed at all.

From there, you have a couple of options:

  • If you want the container to exit when your program exits: run the program as your image's CMD.
  • If you want the container to run until told to exit, and your program to be supervised by s6: write a service script for your program.

Using CMD

Using CMD is a convenient way to take advantage of the overlay. Your CMD can be given at build time in the Dockerfile, or at run time on the command line, either way is fine. It will be run as a normal process in the environment set up by s6; when it fails or exits, the container will shut down cleanly and exit. You can run interactive programs in this manner: only the CMD will receive your interactive command, the support processes will be unimpacted.

For example:

FROM busybox
ADD https://github.com/just-containers/s6-overlay/releases/download/v${S6_OVERLAY_VERSION}/s6-overlay-noarch.tar.xz /tmp
RUN tar -C / -Jxpf /tmp/s6-overlay-noarch.tar.xz
ADD https://github.com/just-containers/s6-overlay/releases/download/v${S6_OVERLAY_VERSION}/s6-overlay-x86_64.tar.xz /tmp
RUN tar -C / -Jxpf /tmp/s6-overlay-x86_64.tar.xz
ENTRYPOINT ["/init"]
docker-host $ docker build -t s6demo .
docker-host $ docker run -ti s6demo /bin/sh
/package/admin/s6-overlay/libexec/preinit: notice: /var/run is not a symlink to /run, fixing it
s6-rc: info: service s6rc-oneshot-runner: starting
s6-rc: info: service s6rc-oneshot-runner successfully started
s6-rc: info: service fix-attrs: starting
s6-rc: info: service fix-attrs successfully started
s6-rc: info: service legacy-cont-init: starting
s6-rc: info: service legacy-cont-init successfully started
s6-rc: info: service legacy-services: starting
s6-rc: info: service legacy-services successfully started
/ # ps
PID   USER     TIME  COMMAND
    1 root      0:00 /package/admin/s6/command/s6-svscan -d4 -- /run/service
   17 root      0:00 {rc.init} /bin/sh -e /run/s6/basedir/scripts/rc.init top /bin/sh
   18 root      0:00 s6-supervise s6-linux-init-shutdownd
   20 root      0:00 /package/admin/s6-linux-init/command/s6-linux-init-shutdownd -c /run/s6/basedir -g 3000 -C -B
   24 root      0:00 s6-supervise s6rc-fdholder
   25 root      0:00 s6-supervise s6rc-oneshot-runner
   31 root      0:00 /package/admin/s6/command/s6-ipcserverd -1 -- /package/admin/s6/command/s6-ipcserver-access -v0 -E -l0 -i data/rules -- /packa
   58 root      0:00 /bin/sh
   66 root      0:00 ps
/ # exit
s6-rc: info: service legacy-services: stopping
s6-rc: info: service legacy-services successfully stopped
s6-rc: info: service legacy-cont-init: stopping
s6-rc: info: service legacy-cont-init successfully stopped
s6-rc: info: service fix-attrs: stopping
s6-rc: info: service fix-attrs successfully stopped
s6-rc: info: service s6rc-oneshot-runner: stopping
s6-rc: info: service s6rc-oneshot-runner successfully stopped
docker-host $

Writing a service

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多