k-means-constrained

k-means-constrained

K均值聚类算法的约束优化实现

k-means-constrained库为K均值聚类算法引入了簇大小约束功能。它巧妙地将簇分配问题转化为最小成本流问题,并借助Google OR-Tools的C++实现高效求解。作为scikit-learn KMeans的扩展,该库保持了兼容的API设计,适合需要精确控制簇规模的聚类应用场景。支持Python 3.8+环境,可通过pip便捷安装。

k-means聚类算法机器学习数据挖掘PythonGithub开源项目

PyPI Python Build Documentation

k-means-constrained

K-means clustering implementation whereby a minimum and/or maximum size for each cluster can be specified.

This K-means implementation modifies the cluster assignment step (E in EM) by formulating it as a Minimum Cost Flow (MCF) linear network optimisation problem. This is then solved using a cost-scaling push-relabel algorithm and uses Google's Operations Research tools's SimpleMinCostFlow which is a fast C++ implementation.

This package is inspired by Bradley et al.. The original Minimum Cost Flow (MCF) network proposed by Bradley et al. has been modified so maximum cluster sizes can also be specified along with minimum cluster size.

The code is based on scikit-lean's KMeans and implements the same API with modifications.

Ref:

  1. Bradley, P. S., K. P. Bennett, and Ayhan Demiriz. "Constrained k-means clustering." Microsoft Research, Redmond (2000): 1-8.
  2. Google's SimpleMinCostFlow C++ implementation

Installation

You can install the k-means-constrained from PyPI:

pip install k-means-constrained

It is supported on Python 3.8 and above.

Example

More details can be found in the API documentation.

>>> from k_means_constrained import KMeansConstrained >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> clf = KMeansConstrained( ... n_clusters=2, ... size_min=2, ... size_max=5, ... random_state=0 ... ) >>> clf.fit_predict(X) array([0, 0, 0, 1, 1, 1], dtype=int32) >>> clf.cluster_centers_ array([[ 1., 2.], [ 4., 2.]]) >>> clf.labels_ array([0, 0, 0, 1, 1, 1], dtype=int32)
<details> <summary>Code only</summary>
from k_means_constrained import KMeansConstrained
import numpy as np
X = np.array([[1, 2], [1, 4], [1, 0],
                [4, 2], [4, 4], [4, 0]])
clf = KMeansConstrained(
     n_clusters=2,
     size_min=2,
     size_max=5,
     random_state=0
 )
clf.fit_predict(X)
clf.cluster_centers_
clf.labels_
</details>

Time complexity and runtime

k-means-constrained is a more complex algorithm than vanilla k-means and therefore will take longer to execute and has worse scaling characteristics.

Given a number of data points $n$ and clusters $c$, the time complexity of:

  • k-means: $\mathcal{O}(nc)$
  • k-means-constrained<sup>1</sup>: $\mathcal{O}((n^3c+n^2c^2+nc^3)\log(n+c)))$

This assumes a constant number of algorithm iterations and data-point features/dimensions.

If you consider the case where $n$ is the same order as $c$ ($n \backsim c$) then:

  • k-means: $\mathcal{O}(n^2)$
  • k-means-constrained<sup>1</sup>: $\mathcal{O}(n^4\log(n)))$

Below is a runtime comparison between k-means and k-means-constrained whereby the number of iterations, initializations, multi-process pool size and dimension size are fixed. The number of clusters is also always one-tenth the number of data points $n=10c$. It is shown above that the runtime is independent of the minimum or maximum cluster size, and so none is included below.

<p align="center"> <img src="https://raw.githubusercontent.com/joshlk/k-means-constrained/master/etc/execution_time.png" alt="Data-points vs execution time for k-means vs k-means-constrained. Data-points=10*clusters. No min/max constraints" width="50%" height="50%"> </p> <details> <summary>System details</summary>
  • OS: Linux-5.15.0-75-generic-x86_64-with-glibc2.35
  • CPU: AMD EPYC 7763 64-Core Processor
  • CPU cores: 120
  • k-means-constrained version: 0.7.3
  • numpy version: 1.24.2
  • scipy version: 1.11.1
  • ortools version: 9.6.2534
  • joblib version: 1.3.1
  • sklearn version: 1.3.0
</details> ---

<sup>1</sup>: Ortools states the time complexity of their cost-scaling push-relabel algorithm for the min-cost flow problem as $\mathcal{O}(n^2m\log(nC))$ where $n$ is the number of nodes, $m$ is the number of edges and $C$ is the maximum absolute edge cost.

Citations

If you use this software in your research, please use the following citation:

@software{Levy-Kramer_k-means-constrained_2018,
author = {Levy-Kramer, Josh},
month = apr,
title = {{k-means-constrained}},
url = {https://github.com/joshlk/k-means-constrained},
year = {2018}
}

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多