
Since, disease detection in plants plays an important role in the agriculture field, as having a disease in plants are quite natural. If proper care is not taken in this area then it can cause serious effects on plants and due to which respective product quality, quantity or productivity is also affected. Plant diseases cause a periodic outbreak of diseases which leads to large-scale death. These problems need to be solved at the initial stage, to save life and money of people. Automatic detection of plant diseases is an important research topic as it may prove benefits in monitoring large fields of crops, and at a very early stage itself it detects the symptoms of diseases means when they appear on plant leaves. Farm landowners and plant caretakers (say, in a nursery) could be benefited a lot with an early disease detection, in order to prevent the worse to come to their plants and let the human know what has to be done beforehand for the same to work accordingly, in order to prevent the worse to come to him too.
This enables machine vision that is to provide image-based automatic inspection, process control. Comparatively, visual identification is labor intensive less accurate and can be done only in small areas. The project involves the use of self-designed image processing algorithms and techniques designed using python to segment the disease from the leaf while using the concepts of machine learning to categorise the plant leaves as healthy or infected. By this method, the plant diseases can be identified at the initial stage itself and the pest and infection control tools can be used to solve pest problems while minimizing risks to people and the environment.
In the initial step, the RGB images of all the leaf samples were picked up. The step-by-step procedure of the proposed system:
Colour Transformation: HSI (hue, saturation, intensity) color model is a popular color model because it is based on human perception. After transformation, only the H (hue) component of HSI colour space is taken into account since it provides us with the required information.
Masking Green Pixels: This is performed as green colour pixel represent the healthy region of a leaf. Green pixels are masked based on the specified threshold values.
Segmentation: The infected portion of the leaf is extracted by segmenting the diseased part with other similar coloured parts (say, a brown coloured branch of a leaf that may look like the disease) which have been considered in the masked out image, are filtered here. All further image processing is done over a region of interest (ROI) defined at this stage.
Classification: From the previous results we analyze and evaluate the features like the area of the leaf, percentage(%) of the leaf infected, the perimeter of the leaf, etc., for all the leaf images, and pass it to the SVM classifier.
These instructions assume you have git installed for working with Github from command window.
git clone https://github.com/johri-lab/Automatic-leaf-infection-identifier.git
cd Automatic-leaf-infection-identifier
pip3 install -r requirements.txt
or
sudo python3 setup.py install
In leaf sampler directory run:
python3 leafdetectionALLsametype.py -i .
or
python3 leafdetectionALLmix.py -i .
leafdetectionALLsametype.py for running on one same category of images (say, all images are infected) and leafdetectionALLmix.py for creating dataset for both category (infected/healthy) of leaf images, in the working directory.
Note: The code is set to run for all .jpg,.jpeg and .png file format images only, present in the specified directory.
If you wish, you can add more file format support by intoducing it in the conditional statement of line 52 of both the files.
Run the following code:
python3 GUIdriver.py
where {Browse} is used to select the input image file for classifier
The code runs on two files:
main.py for image segmentatin and feature extraction.classifier.py is called in main.py for classifying the leaf in the input image as "infected" or "healthy".
The code in this project is licensed under the MIT license 2018 - Shikhar Johri.


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程 。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号