帮助开发者构建和部署多模态AI应用的开源框架
Jina是一个强大的开源框架,帮助开发者构建和部署多模态AI应用。它支持通过gRPC、HTTP和WebSockets通信,并且可以轻松扩展和部署到生产环境。无需担心底层基础设施的复杂性,开发者可以专注于逻辑和算法。Jina支持任何数据类型和主流深度学习框架,提供Pythonic体验,从本地部署到使用Docker-Compose、Kubernetes或Jina AI Cloud的高级编排。此外,Jina的流水线功能允许多个微服务容器化并独立扩展,实现高性能服务设计。
Jina让你可以构建通过gRPC、HTTP和WebSockets进行通信的多模态AI服务和管道,然后将它们扩展并部署到生产环境。你可以专注于逻辑和算法,而不必担心基础设施的复杂性。
Jina为机器学习模型提供了从本地部署到高级编排框架(如Docker-Compose、Kubernetes或Jina AI Cloud)的一流Python体验。Jina使高级解决方案工程和云原生技术对每个开发者都变得易于访问。
数据结构和通信协议
高级编排和扩展能力
云端之旅
pip install jina
在Apple Silicon/Windows上找到更多安装选项。
Jina有三个基本层:
让我们构建一个快速、可靠且可扩展的基于gRPC的AI服务。在Jina中,我们称之为**Executor。我们的简单Executor将包装来自Stability AI的StableLM LLM。然后我们将使用Deployment**来服务它。
让我们实现服务的逻辑:
<table> <tr> <th><code>executor.py</code></th> <tr> <td></td> </tr> </table>from jina import Executor, requests from docarray import DocList, BaseDoc from transformers import pipeline class Prompt(BaseDoc): text: str class Generation(BaseDoc): prompt: str text: str class StableLM(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) self.generator = pipeline( 'text-generation', model='stabilityai/stablelm-base-alpha-3b' ) @requests def generate(self, docs: DocList[Prompt], **kwargs) -> DocList[Generation]: generations = DocList[Generation]() prompts = docs.text llm_outputs = self.generator(prompts) for prompt, output in zip(prompts, llm_outputs): generations.append(Generation(prompt=prompt, text=output)) return generations
然后我们用Python API或YAML部署它:
<div class="table-wrapper"> <table> <tr> <th> Python API: <code>deployment.py</code> </th> <th> YAML: <code>deployment.yml</code> </th> </tr> <tr> <td></td> <td>from jina import Deployment from executor import StableLM dep = Deployment(uses=StableLM, timeout_ready=-1, port=12345) with dep: dep.block()
jtype: Deployment with: uses: StableLM py_modules: - executor.py timeout_ready: -1 port: 12345
然后通过CLI运行YAML Deployment:jina deployment --uses deployment.yml
使用Jina客户端向服务发送 请求:
</td> <td>from jina import Client from docarray import DocList, BaseDoc class Prompt(BaseDoc ```yaml jtype: TextToImage py_modules: - executor.py metas: name: TextToImage description: 基于StableDiffusion的文字转图片生成执行器 url: keywords: []
</td> </tr> </table> </div>diffusers accelerate transformers
然后通过执行 jina hub push TextToImage
将执行器推送到Hub。
这将生成一个URL,您可以在 Deployment
和 Flow
中使用该URL来使用已推送的执行器容器。
jtype: Flow with: port: 12345 executors: - uses: jinai+docker://<user-id>/StableLM - uses: jinai+docker://<user-id>/TextToImage
使用Kubernetes与Jina很容易:
jina export kubernetes flow.yml ./my-k8s kubectl apply -R -f my-k8s
Docker Compose同样简单:
jina export docker-compose flow.yml docker-compose.yml docker-compose up
注意 您还可以将部署YAML导出到 Kubernetes 和 Docker Compose。
这还不是全部。我们还支持 OpenTelemetry, Prometheus, 和 Jaeger。
哪种云原生技术对您来说仍然具有挑战性?告诉我们,我们会处理复杂性并使其变得简单。
您还可以将Flow部署到JCloud,在那里您可以通过一个命令轻松享受自动扩展、监控等功能。
首先,通过指定资源需求并使用容器化的Hub执行器,将 flow.yml
文件转换为 JCloud兼容的YAML。
然后,使用 jina cloud deploy
命令部署到云端:
wget https://raw.githubusercontent.com/jina-ai/jina/master/.github/getting-started/jcloud-flow.yml jina cloud deploy jcloud-flow.yml
警告
在完成本教程后,请确保删除/清理Flow以节省资源和积分。
阅读更多关于 将Flow部署到JCloud 的信息。
大型语言模型可以为从聊天机器人到助手和智能系统的广泛应用提供动力。然而,这些模型可能很庞大且运行缓慢,而用户希望系统既智能又快速!
大型语言模型通过将您的问题转化为标记(tokens),然后一个一个地生成新标记,直到模型决定停止生成为止。这意味着您需要流式传输由大型语言模型 生成的输出标记到客户端。在本教程中,我们将讨论如何通过Jina中的流式端点实现这一目标。
<!-- end llm-streaming-intro -->第一步是定义流式服务的架构,就像在任何其他服务框架中一样。服务的输入是提示和要生成的最大标记数量,而输出只是标记ID:
<!-- end llm-streaming-schemas -->from docarray import BaseDoc class PromptDocument(BaseDoc): prompt: str max_tokens: int class ModelOutputDocument(BaseDoc): token_id: int generated_text: str
我们的服务依赖于一个大型语言模型。作为示例,我们将使用 gpt2
模型。这是您如何在执行器中加载此类模型:
<!-- end llm-streaming-init -->from jina import Executor, requests from transformers import GPT2Tokenizer, GPT2LMHeadModel import torch tokenizer = GPT2Tokenizer.from_pretrained('gpt2') class TokenStreamingExecutor(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) self.model = GPT2LMHeadModel.from_pretrained('gpt2')
我们的流式端点接受 PromptDocument
作为输入,并流式传输 ModelOutputDocument
。要将文档流式传输回客户端,在端点实现中使用 yield
关键字。因此,我们使用模型生成最多 max_tokens
个标记并逐个传输,直到生成停止:
class TokenStreamingExecutor(Executor): ... @requests(on='/stream') async def task(self, doc: PromptDocument, **kwargs) -> ModelOutputDocument: input = tokenizer(doc.prompt, return_tensors='pt') input_len = input['input_ids'].shape[1] for _ in range(doc.max_tokens): output = self.model.generate(**input, max_new_tokens=1) if output[0][-1] == tokenizer.eos_token_id: break yield ModelOutputDocument( token_id=output[0][-1], generated_text=tokenizer.decode( output[0][input_len:], skip_special_tokens=True ), ) input = { 'input_ids': output, 'attention_mask': torch.ones(1, len(output[0])), }
了解更多关于 流式端点 的信息,见 Executor
文档。
最后一步是提供执行器服务并使用客户端发送请求。 要使用gRPC提供执行器服务:
from jina import Deployment with Deployment(uses=TokenStreamingExecutor, port=12345, protocol='grpc') as dep: dep.block()
要从客户端发送请求:
import asyncio from jina import Client async def main(): client = Client(port=12345, protocol='grpc', asyncio=True) async for doc in client.stream_doc( on='/stream', inputs=PromptDocument(prompt='法国的首都是什么?', max_tokens=10), return_type=ModelOutputDocument, ): print(doc.generated_text) asyncio.run(main())
<!-- end llm-streaming-serve --> <!-- start support-pitch -->The The capital The capital of The capital of France The capital of France is The capital of France is Paris The capital of France is Paris.
Jina由 Jina AI 支持,并根据 Apache-2.0 许可发布。
<!-- end support-pitch -->
AI辅助编程,代码自动 修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。