jax-triton
仓库包含了 JAX 和 Triton 之间的集成。
文档可以在这里找到。
这不是 Google 官方支持的产品。
主要的函数是 jax_triton.triton_call
,用于将 Triton 函数应用于 JAX 数组,包括在 jax.jit
编译的函数内部。例如,我们可以定义一个来自 Triton 教程的内核:
import triton import triton.language as tl @triton.jit def add_kernel( x_ptr, y_ptr, length, output_ptr, block_size: tl.constexpr, ): """添加两个向量。""" pid = tl.program_id(axis=0) block_start = pid * block_size offsets = block_start + tl.arange(0, block_size) mask = offsets < length x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y tl.store(output_ptr + offsets, output, mask=mask)
然后我们可以使用 jax_triton.triton_call
将其应用于 JAX 数组:
import jax import jax.numpy as jnp import jax_triton as jt def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray: out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype) block_size = 8 return jt.triton_call( x, y, x.size, kernel=add_kernel, out_shape=out_shape, grid=(x.size // block_size,), block_size=block_size) x_val = jnp.arange(8) y_val = jnp.arange(8, 16) print(add(x_val, y_val)) print(jax.jit(add)(x_val, y_val))
查看示例目录,特别是 fused_attention.py 和融合注意力 ipynb。
$ pip install jax-triton
确保安装了与 CUDA 兼容的 jaxlib
。
例如,你可以运行:
$ pip install "jax[cuda11_cudnn82]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
JAX-Triton 和 Pallas 在 JAX 和 Jaxlib 的最新版本以及接近 Triton 的最新版本上开发。要获取 JAX-Triton 的最新版本,请运行:
$ pip install 'jax-triton @ git+https://github.com/jax-ml/jax-triton.git'
这应该会安装兼容版本的 JAX 和 Triton。
JAX-Triton 确实依赖于 Jaxlib,但它通常是一个更稳定的依赖项。你可能可以使用最近的 jaxlib 发布版本:
$ pip install jaxlib[cuda11_pip] $ # 或 $ pip install jaxlib[cuda12_pip]
如果发现最新的 Jaxlib 发布版本有问题,可以尝试使用 Jaxlib 的每日构建版本。 要安装新的 jaxlib,你可以找到 CUDA 11 每日构建 或 CUDA 12 每日构建 的链接。然后通过以下方式安装:
$ pip install 'jaxlib @ <每日构建链接>'
或者自动通过 pip 安装 CUDA,你可以这样做:
$ pip install 'jaxlib[cuda11_pip] @ <每日构建链接>' $ # 或 $ pip install 'jaxlib[cuda12_pip] @ <每日构建链接>'
要开发 jax-triton
,你可以通过以下方式克隆仓库:
$ git clone https://github.com/jax-ml/jax-triton.git
然后进行可编辑安装:
$ cd jax-triton $ pip install -e .
要运行 jax-triton
测试,你需要安装 pytest
:
$ pip install pytest $ pytest tests/
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动 策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一 站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能 ,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号