awesome-normalizing-flows

awesome-normalizing-flows

归一化流 构建复杂概率分布的新兴统计工具

这个项目汇集了归一化流相关的优质资源,包括论文、应用案例、视频讲解、软件包和代码库等。归一化流是一种新兴统计技术,能通过可训练的光滑可逆变换链将简单分布转化为复杂分布。该资源库为研究人员和实践者提供了全面的参考材料,有助于深入了解和应用这一强大工具。

归一化流深度学习生成模型概率分布机器学习Github开源项目
<h1 align="center"> Awesome Normalizing Flows </h1> <h4 align="center">

Awesome Pull Requests Welcome Link Check DOI

</h4>

A list of awesome resources for understanding and applying normalizing flows (NF): a relatively simple yet powerful new tool in statistics for constructing expressive probability distributions from simple base distributions using a chain (flow) of trainable smooth bijective transformations (diffeomorphisms).

<a href="https://github.com/janosh/tikz/tree/main/assets/normalizing-flow"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/normalizing-flow/normalizing-flow-white.svg"> <img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/normalizing-flow/normalizing-flow.svg"> </picture> </a>

<sup>Figure inspired by Lilian Weng. Created in TikZ. View source.</sup>

<br>

<img src="assets/toc.svg" alt="Contents" height="18px">  Table of Contents

  1. 📝 Publications
  2. 🛠️ Applications
  3. 📺 Videos
  4. 📦 Packages
    1. <img src="assets/pytorch.svg" alt="PyTorch" height="20px">  PyTorch Packages
    2. <img src="assets/tensorflow.svg" alt="TensorFlow" height="20px">  TensorFlow Packages
    3. <img src="assets/jax.svg" alt="JAX" height="15px">  JAX Packages
    4. <img src="assets/julia.svg" alt="Julia" height="15px">  Julia Packages
  5. 🧑‍💻 Repos
    1. <img src="assets/pytorch.svg" alt="PyTorch" height="20px">  PyTorch Repos
    2. <img src="assets/jax.svg" alt="JAX" height="15px">  JAX Repos
    3. <img src="assets/tensorflow.svg" alt="TensorFlow" height="20px">  TensorFlow Repos
    4. <img src="assets/other.svg" alt="Other" height="15px">  Other Repos
  6. 🌐 Blog Posts
  7. 🚧 Contributing
<br>

📝 Publications <small>(60)</small>

  1. 2024-06-20 - Transferable Boltzmann Generators by Klein, Noé<br> Boltzmann Generators, a machine learning method, generate equilibrium samples of molecular systems by learning a transformation from a simple prior distribution to the target Boltzmann distribution via normalizing flows. Recently, flow matching has been used to train Boltzmann Generators for small systems in Cartesian coordinates. This work extends this approach by proposing a framework for transferable Boltzmann Generators that can predict Boltzmann distributions for unseen molecules without retraining. This allows for approximate sampling and efficient reweighting to the target distribution. The framework is tested on dipeptides, demonstrating efficient generalization to new systems and improved efficiency compared to single-system training. [Code]

  2. 2023-01-03 - FInC Flow: Fast and Invertible k×k Convolutions for Normalizing Flows by Kallapa, Nagar et al.<br> propose a k×k convolutional layer and Deep Normalizing Flow architecture which i) has a fast parallel inversion algorithm with running time O(nk^2) (n is height and width of the input image and k is kernel size), ii) masks the minimal amount of learnable parameters in a layer. iii) gives better forward pass and sampling times comparable to other k×k convolution-based models on real-world benchmarks. We provide an implementation of the proposed parallel algorithm for sampling using our invertible convolutions on GPUs. [Code]

  3. 2022-10-15 - Invertible Monotone Operators for Normalizing Flows by Ahn, Kim et al.<br> This work proposes the monotone formulation to overcome the issue of the Lipschitz constants in previous ResNet-based normalizing flows using monotone operators and provides an in-depth theoretical analysis. Furthermore, this work constructs an activation function called Concatenated Pila (CPila) to improve gradient flow. The resulting model, Monotone Flows, exhibits an excellent performance on multiple density estimation benchmarks (MNIST, CIFAR-10, ImageNet32, ImageNet64). [Code]

  4. 2022-08-18 - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows by Postels, Danelljan et al.<br> The invertibility constraint of NFs imposes limitations on data distributions that reside on lower dimensional manifolds embedded in higher dimensional space. This is often bypassed by adding noise to the data which impacts generated sample quality. This work generates samples from the original data distribution given full knowledge of perturbed distribution and noise model. They establish NFs trained on perturbed data implicitly represent the manifold in regions of maximum likelihood, then propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.

  5. 2022-06-03 - Graphical Normalizing Flows by Wehenkel, Louppe<br> This work revisits coupling and autoregressive transformations as probabilistic graphical models showing they reduce to Bayesian networks with a pre-defined topology. From this new perspective, the authors propose the graphical normalizing flow, a new invertible transformation with either a prescribed or a learnable graphical structure. This model provides a promising way to inject domain knowledge into normalizing flows while preserving both the interpretability of Bayesian networks and the representation capacity of normalizing flows. [Code]

  6. 2022-05-16 - Multi-scale Attention Flow for Probabilistic Time Series Forecasting by Feng, Xu et al.<br> Proposes a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF), where one integrates multi-scale attention and relative position information and the multivariate data distribution is represented by the conditioned normalizing flow.

  7. 2022-03-02 - Adaptive Monte Carlo augmented with normalizing flows by Gabrié, Rotskoff et al.<br> Markov Chain Monte Carlo (MCMC) algorithms struggle with sampling from high-dimensional, multimodal distributions, requiring extensive computational effort or specialized importance sampling strategies. To address this, an adaptive MCMC approach is proposed, combining local updates with nonlocal transitions via normalizing flows. This method blends standard transition kernels with generative model moves, adapting the generative model using generated data to improve sampling efficiency. Theoretical analysis and numerical experiments demonstrate the algorithm's ability to equilibrate quickly between metastable modes, sampling effectively across large free energy barriers and achieving significant accelerations over traditional MCMC methods. [Code]

  8. 2022-01-14 - E(n) Equivariant Normalizing Flows by Satorras, Hoogeboom et al.<br> Introduces equivariant graph neural networks into the normalizing flow framework which combine to give invertible equivariant functions. Demonstrates their flow beats prior equivariant models and allows sampling of molecular configurations with positions, atom types and charges.

  9. 2021-07-16 - Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods by Gabrié, Rotskoff et al.<br> Normalizing flows have potential in Bayesian statistics as a complementary or alternative method to MCMC for sampling posteriors. However, their training via reverse KL divergence may be inadequate for complex posteriors. This research proposes a new training approach utilizing direct KL divergence, which involves augmenting a local MCMC algorithm with a normalizing flow to enhance mixing rate and utilizing the resulting samples to train the flow. This method requires minimal prior knowledge of the posterior and can be applied for model validation and evidence estimation, offering a promising strategy for efficient posterior sampling.

  10. 2021-07-03 - CInC Flow: Characterizable Invertible 3x3 Convolution by Nagar, Dufraisse et al.<br> Seeks to improve expensive convolutions. They investigate the conditions for when 3x3 convolutions are invertible under which conditions (e.g. padding) and saw successful speedups. Furthermore, they developed a more expressive, invertible Quad coupling layer. [Code]

  11. 2021-04-14 - Orthogonalizing Convolutional Layers with the Cayley Transform by Trockman, Kolter<br> Parametrizes the multichannel convolution to be orthogonal via the Cayley transform (skew-symmetric convolutions in the Fourier domain). This enables the inverse to be computed efficiently. [Code]

  12. 2021-04-14 - Improving Normalizing Flows via Better Orthogonal Parameterizations by Goliński, Lezcano-Casado et al.<br> Parametrizes the 1x1 convolution via the exponential map and the Cayley map. They demonstrate an improved optimization for the Sylvester normalizing flows.

  13. 2020-09-28 - Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows by Rasul, Sheikh et al.<br> Models the multi-variate temporal dynamics of time series via an autoregressive deep learning model, where the data distribution is represented by a conditioned normalizing flow. [OpenReview.net] [Code]

  14. 2020-09-21 - Haar Wavelet based Block Autoregressive Flows for Trajectories by Bhattacharyya, Straehle et al.<br> Introduce a Haar wavelet-based block autoregressive model.

  15. 2020-07-15 - AdvFlow: Inconspicuous Black-box Adversarial Attacks using Normalizing Flows by Dolatabadi, Erfani et al.<br> An adversarial attack method on image classifiers that use normalizing flows. [Code]

  16. 2020-07-06 - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows by Nielsen, Jaini et al.<br> They present a generalized framework that encompasses both Flows (deterministic maps) and VAEs (stochastic maps). By seeing deterministic maps x = f(z) as limiting cases of stochastic maps x ~ p(x|z), the ELBO is reinterpreted as a change of variables formula for the stochastic maps. Moreover, they present a few examples of surjective layers using stochastic maps, which can be composed together with flow layers. [Video] [Code]

  17. 2020-06-15 - Why Normalizing Flows Fail to Detect Out-of-Distribution Data by Kirichenko, Izmailov et al.<br> This study how traditional normalizing flow models can suffer from out-of-distribution data. They offer a solution to combat this issue by modifying the coupling layers. [Tweet] [Code]

  18. 2020-06-03 - Equivariant Flows: exact likelihood generative learning for symmetric densities by Köhler, Klein et al.<br> Shows that distributions generated by equivariant NFs faithfully reproduce symmetries in the underlying density. Proposes building blocks for flows which preserve typical symmetries in physical/chemical many-body systems. Shows that symmetry-preserving flows can provide better generalization and sampling efficiency.

  19. 2020-06-02 - The Convolution Exponential and Generalized Sylvester Flows by Hoogeboom, Satorras et al.<br> Introduces exponential convolution to add the spatial dependencies in linear layers as an improvement of the 1x1 convolutions. It uses matrix exponentials to create cheap and invertible layers. They also use this new architecture to create convolutional Sylvester flows and graph convolutional exponentials. [Code]

  20. 2020-05-11 - iUNets: Fully invertible U-Nets with Learnable Upand Downsampling by Etmann, Ke et al.<br> Extends the classical UNet to be fully invertible by enabling invertible, orthogonal upsampling and downsampling layers. It is rather efficient so it should be able to enable stable training of deeper and larger networks.

  21. 2020-04-08 - Normalizing Flows with Multi-Scale Autoregressive Priors by Mahajan, Bhattacharyya et al.<br> Improves the representational power of flow-based models by introducing channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR). [Code]

  22. 2020-03-31 - Flows for simultaneous manifold learning and density estimation by Brehmer, Cranmer<br> Normalizing flows that learn the data manifold and probability density function on that manifold. [Tweet] [Code]

  23. 2020-03-04 - Gaussianization Flows by Meng, Song et al.<br> Uses a repeated composition of trainable kernel layers and orthogonal transformations. Very competitive versus some of the SOTA like Real-NVP, Glow and FFJORD. [Code]

  24. 2020-02-27 - Gradient Boosted Normalizing Flows by Giaquinto, Banerjee<br> Augment traditional normalizing flows with gradient boosting. They show that training multiple models can achieve good results and it's not necessary to have more complex distributions. [Code]

  25. 2020-02-24 - [Modeling Continuous Stochastic Processes with Dynamic Normalizing

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多