DataChain 是一个基于 Python 的人工智能数据仓库,专用于转换和分析非结构化数据,如图像、音频、视频、文本和 PDF。它能够与外部存储(如 S3)集成,有效处理数据而无需数据复制,并通过内部数据库管理元数据以实现高效查询。
多模态数据集的准备与管理:DataChain 在数据的预训练、微调或大型语言模型(LLM)评估阶段非常理想,用于数据的组织和精炼。
生成式人工智能数据分析:支持多模态数据的高级分析,并利用大型语言模型进行临时分析。
📂 多模态数据集版本控制:能够无冗余地版本化非结构化数据,支持引用 S3、GCP、Azure 和本地文件系统。支持多模态数据,包括图像、视频、文本、PDF、JSON、CSV、Parquet 等,将文件和元数据整合成持久的、版本化的列数据集。
🐍 Python 友好:可以操作 Python 对象和字段,处理浮点分数、字符串、矩阵以及 LLM 响应对象。支持在大规模数据集上运行 Python 代码,具备内建并行化和内存高效计算功能,无需使用 SQL 或 Spark。
🧠 数据丰富化与处理:利用本地 AI 模型和 LLM API 生成元数据,基于元数据进行过滤、连接和分组。支持向量嵌入搜索,并对 Python 对象进行高性能向量化操作。
DataChain 的安装非常简单,仅需在终端中运行以下命令:
$ pip install datachain
在一个包含猫和狗图像的存储中,每个图像都有相应的 JSON 文件,例如 cat.1009.json
。以下是利用 JSON 元数据仅下载“高置信度猫”图像的示例:
from datachain import Column, DataChain meta = DataChain.from_json("gs://datachain-demo/dogs-and-cats/*json", object_name="meta") images = DataChain.from_storage("gs://datachain-demo/dogs-and-cats/*jpg") images_id = images.map(id=lambda file: file.path.split('.')[-2]) annotated = images_id.merge(meta, on="id", right_on="meta.id") likely_cats = annotated.filter((Column("meta.inference.confidence") > 0.93) \ & (Column("meta.inference.class_") == "cat")) likely_cats.export_files("high-confidence-cats/", signal="file")
使用 transformers
库进行批量推理,并将带有正面情感的文件复制到本地目录:
from transformers import pipeline from datachain import DataChain, Column classifier = pipeline("sentiment-analysis", device="cpu", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") def is_positive_dialogue_ending(file) -> bool: dialogue_ending = file.read()[-512:] return classifier(dialogue_ending)[0]["label"] == "POSITIVE" chain = ( DataChain.from_storage("gs://datachain-demo/chatbot-KiT/", object_name="file", type="text") .settings(parallel=8, cache=True) .map(is_positive=is_positive_dialogue_ending) .save("file_response") ) positive_chain = chain.filter(Column("is_positive") == True) positive_chain.export_files("./output")
LLM 可用作通用分类器。以下示例展示了如何使用 Mistral API 评估聊天机器人对话:
from mistralai import Mistral from datachain import File, DataChain, Column PROMPT = "Was this dialog successful? Answer in a single word: Success or Failure." def eval_dialogue(file: File) -> bool: client = Mistral() response = client.chat.complete( model="open-mixtral-8x22b", messages=[{"role": "system", "content": PROMPT}, {"role": "user", "content": file.read()}]) result = response.choices[0].message.content return result.lower().startswith("success") chain = ( DataChain.from_storage("gs://datachain-demo/chatbot-KiT/", object_name="file") .settings(parallel=4, cache=True) .map(is_success=eval_dialogue) .save("mistral_files") ) successful_chain = chain.filter(Column("is_success") == True) successful_chain.export_files("./output_mistral") print(f"{successful_chain.count()} files were exported")
DataChain 提供了强大的功能来处理和分析大规模和多样化的数据集,通过无缝集成和强大的处理能力,为数据科学家和工程师提供了一种高效且灵活的解决方案。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服 务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
高质量语音生成模型
CSM 是一个开源的语音生成项目,它提供了一个基于 Llama-3.2-1B 和 CSM-1B 的语音生成模型。该项目支持多语言,可生成多种声音,适用于研究和教育场景。通过使用 CSM,用户可以方便地进行语音合成,同时项目还提供了水印功能,确保生成音频的可追溯性和透明度。
Hugging Face 的 AI 智能体课程,涵盖多种智能体框架及相关知识
本项目是 Hugging Face 推出的 AI 智能体课程,深入介绍了 AI 智能体的相关概念,如大语言模型、工具使用等。课程包含多个单元,详细讲解了不同的智能体框架,如 smolagents 和 LlamaIndex,提供了丰富的学习资源和实践案例。适合对 AI 智能体感兴趣的开发者和学习者,有助于提升他们在该领域的知识和技能。
用于 AI 项目管理和 API 交互的工具集,助力 AI 项目高效开发与管理。
RagaAI-Catalyst 是一款专注于 AI 领域的强大工具集,为开发者提供了便捷的项目管理、API 交互、令牌管理等功能。支持多 API 密钥上传,能快速创建、列出和管理 AI 项目,还可获取项目用例和指标信息。适用于各类 AI 开发场景,提升开发效率,推动 AI 项目顺利开展。
一个包含多种工具和文档处理功能,适用于 LLM 使用的项目。
smolagents 是一个功能丰富的项目,提供了如文件格式转换、网页内容读取、语义搜索等多种工具,支持将常见文件类型或网页转换为 Markdown,方便进行文档处理和信息提取,能满足不同场景下的需求,提升工作效率和数据处理能力。