语言驱动的零样本语义图像分割模型
LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。
这个仓库包含论文《语言驱动的语义分割》的官方 PyTorch 实现。
ICLR 2022
我们提出了 LSeg,一种新颖的语言驱动语义图像分割模型。LSeg 使用文本编码器计算描述性输入标签(如"草"或"建筑")的嵌入,同时使用基于 transformer 的图像编码器计算输入图像的每像素密集嵌入。图像编码器通过对比目标进行训练,以将像素嵌入与相应语义类别的文本嵌入对齐。文本嵌入提供了一种灵活的标签表示,其中语义相似的标签映射到嵌入空间中的相似区域(例如,"猫"和"毛茸茸的")。这使得 LSeg 能够在测试时泛化到以前未见过的类别,而无需重新训练甚至不需要一个额外的训练样本。我们证明,与现有的零样本和少样本语义分割方法相比,我们的方法实现了极具竞争力的零样本性能,甚至在提供固定标签集时与传统分割算法的准确度相匹配。
请查看我们的视频演示(4k)以进一步展示 LSeg 的功能。
选项 1:
pip install -r requirements.txt
选项 2:
conda install ipython
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2
pip install git+https://github.com/zhanghang1989/PyTorch-Encoding/
pip install pytorch-lightning==1.3.5
pip install opencv-python
pip install imageio
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
pip install altair
pip install streamlit
pip install --upgrade protobuf
pip install timm
pip install tensorboardX
pip install matplotlib
pip install test-tube
pip install wandb
默认情况下,对于训练、测 试和演示,我们使用 ADE20k。
python prepare_ade20k.py
unzip ../datasets/ADEChallengeData2016.zip
注意:对于演示,如果您想使用随机输入,可以忽略数据加载并注释此链接处的代码。
下载演示模型并将其放在 checkpoints
文件夹下,命名为 checkpoints/demo_e200.ckpt
。
然后运行 streamlit run lseg_app.py
下载演示模型并将其放在 checkpoints
文件夹下,命名为 checkpoints/demo_e200.ckpt
。
然后按照 lseg_demo.ipynb 来体验 LSeg。祝您使用愉快!
训练: 骨干网络 = ViT-L/16, 文本编码器来自 CLIP ViT-B/32
bash train.sh
测试: 骨干网络 = ViT-L/16, 文本编码器来自 CLIP ViT-B/32
bash test.sh
请按照 HSNet 的说明,将所有数据 集放在 data/Dataset_HSN
中
for fold in 0 1 2 3; do
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset pascal \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold ${fold} --nshot 0 \
--weights checkpoints/pascal_fold${fold}.ckpt
done
for fold in 0 1 2 3; do
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset coco \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold ${fold} --nshot 0 \
--weights checkpoints/pascal_fold${fold}.ckpt
done
python -u test_lseg_zs.py --backbone clip_vitl16_384 --module clipseg_DPT_test_v2 --dataset fss \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold 0 --nshot 0 \
--weights checkpoints/fss_l16.ckpt
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset fss \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold 0 --nshot 0 \
--weights checkpoints/fss_rn101.ckpt
如果您觉得这个仓库有用,请引用:
@inproceedings{
li2022languagedriven,
title={Language-driven Semantic Segmentation},
author={Boyi Li and Kilian Q Weinberger and Serge Belongie and Vladlen Koltun and Rene Ranftl},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=RriDjddCLN}
}
感谢以下项目的代码库:DPT、Pytorch_lightning、CLIP、Pytorch Encoding、Streamlit、Wandb
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号